First Half 2022 Semi-Annual Groundwater Monitoring Report Patchogue Former MGP Site NYSDEC Site No. 1-52-182 Village of Patchogue, Suffolk County, New York

> Prepared for National Grid USA, Hicksville, New York September 9, 2022

First Half 2022 Semi-Annual Groundwater Monitoring Report Patchogue Former MGP Site NYSDEC Site No. 1-52-182 Village of Patchogue, Suffolk County, New York

Prepared for National Grid USA 175 East Old Country Road Hicksville, New York 11801

September 9, 2022

Project Number: 153021.805.016

Brown and Caldwell Associates 500 North Franklin Turnpike, Suite 306 Ramsey, New Jersey 07446

Table of Contents

Apı	pendices	
	t of Tables	
Lis	t of Figures	ii
Lis	t of Abbreviations	iii
1.	Introduction	1-1
	1.1 Background	
2.	Scope of Work	2-1
3.	Results and Findings	3-1
	3.1 Water Level Data	3-1
	3.2 NAPL Gauging	3-1
	3.3 Groundwater Quality Data	3-1
4.	Summary and Conclusions	4-1
5.	References	5-1

Appendices

Appendix A	Field Sampling Data Sheets
Appendix B	Laboratory Reports
Appendix C	Data Validator Qualifications
Appendix D	Data Usability Summary Report
Appendix E	Evaluation of Potential Impact to River from Site Constituents in Groundwater - 2020
	Data
Appendix F	Evaluation of Potential Impact to River from Increased pH Levels in Groundwater –
	December 2020 Data

List of Tables

- Table 1. Water Elevations and NAPL Monitoring Data
- Table 2. Groundwater Analytical Results
- Table 3. Summary of Historical BTEX Concentrations
- Table 4. Summary of Historical PAH Concentrations

List of Figures

- Figure 1. Water Table Elevation Contour Map June 14, 2022
- Figure 2. Groundwater Quality Trend Plot Acenaphthene
- Figure 3. Groundwater Quality Trend Plot Benzene
- Figure 4. Groundwater Quality Trend Plot Fluorene
- Figure 5. Groundwater Quality Trend Plot Naphthalene
- Figure 6. Groundwater Quality Trend Plot Pyrene

List of Abbreviations

BC Brown and Caldwell Associates

BTEX Benzene, Toluene, Ethylbenzene and Isomers of Xylene

DUSR Data Usability Summary Report

ELAP Environmental Laboratory Approval Program

FER Final Engineering Report

ISS In Situ Solidification

Lancaster Eurofins Lancaster Laboratories Environmental

MGP Manufactured Gas Plant

MS/MSD Matrix Spike/Matrix Spike Duplicate

NAPL Non-Aqueous Phase Liquid

NYCRR New York State Code of Rules and Regulations

NYSDEC New York Department of Environmental Conservation

NYSDOH New York State Department of Health

PAH Polycyclic Aromatic Hydrocarbon
QA/QC Quality Assurance/Quality Control

SIM Selective Ion Monitoring
Site Patchogue Former MGP Site

TOGS Technical and Operational Guidance Series

μg/L micrograms per liter

USEPA United States Environmental Protection Agency

Section 1

Introduction

This Groundwater Monitoring Report documents the implementation and summarizes the results of the groundwater monitoring activities conducted during the first half of 2022 at the Patchogue Former Manufactured Gas Plant (MGP) Site (hereinafter referred to as the "Site"). This monitoring event is the ninth to be conducted after completion of remedy implementation in the fourth quarter 2019. The groundwater monitoring activities included the performance of water level measurements, non-aqueous phase liquid (NAPL) gauging and groundwater sampling activities.

The groundwater monitoring event and the preparation of this report are part of the long-term groundwater monitoring program being conducted at the Site in accordance with the "100% Remedial Design Report" (Brown and Caldwell Associates (BC), May 2019) as modified by subsequent email correspondence (during the period from January 7 to 16, 2020) between National Grid and the New York State Department of Environmental Conservation (NYSDEC). Remedial construction activities (including restoration) were completed in July 2020. This report has been prepared for submittal to the NYSDEC and includes the following:

- Description of the scope of the field activities, methods, and procedures
- Table summarizing the results of the water level measurements and the gauging for the presence of NAPL in the monitoring wells (Table 1)
- Table summarizing the analytical results for the groundwater samples obtained during the first half 2022 groundwater monitoring event including a comparison to the applicable groundwater quality criteria (Table 2)
- Comparison of data from this monitoring period to data from historical monitoring events (Tables 3 and 4)
- Discussion of the results and findings from the groundwater monitoring data
- A water table elevation contour map depicting the generalized direction of groundwater flow based on groundwater elevation data obtained from monitoring wells (Figure 1)
- Water quality trend plots for select constituents (Figures 2 through 6)
- Field Sampling Data Sheets (Appendix A)
- Laboratory Data Report (Appendix B)
- Data Validator Qualifications (Appendix C)
- Data Usability Summary Report (DUSR) (Appendix D)
- Evaluation of Potential Impact to River from Site Constituents in Groundwater March, June, September, and December 2020 Data (Appendix E)
- Evaluation of Potential Impact to River from Increased pH Levels in Groundwater December 2020 Data (Appendix F)

1.1 Background

This report presents the results and findings associated with the June 2022 groundwater monitoring event, which is the ninth such event conducted following implementation of the Site remedy. Groundwater conditions prior to remedy implementation are documented and discussed in previous groundwater monitoring reports dating back to 2009 and in the "Final Remedial Investigation Report for the Patchogue Former MGP Site" (Tetra Tech EC, Inc., December 2009). Remedial construction activities, which included in situ solidification (ISS) of MGP-related source materials and associated soils, were performed during the period from June through December 2019. Final Site restoration efforts were completed in the July of 2020. At the end of 2018, groundwater monitoring was suspended to allow for remedial construction activities. Several monitoring wells and piezometers were decommissioned prior to remedial construction activities to facilitate remedy implementation. These wells included MW-5, MW-6, MW-9S, MW-9D, and PZ-1A through PZ-4A. Each well/piezometer was decommissioned in accordance with NYSDEC's guidance document "CP-43: Groundwater Monitoring Well Decommissioning Policy". A description of the decommissioning activities, as well as field inspection logs and well decommissioning records were provided under separate cover in the "Final Engineering Report" (FER) (BC, February 2022).

Prior to resumption of groundwater monitoring following remedial construction activities, five monitoring well couplets (MW-10S/D through MW-14S/D) were installed in January 2020 to facilitate performance of a long-term groundwater monitoring program at the Site. These additions to the well network were installed in accordance with the "100% Remedial Design Report" (BC, May 2019) and as modified by subsequent email correspondence (during the period from January 7 to 16, 2020) between National Grid and the NYSDEC. These wells are supplemental to existing wells MW-1, MW-3, and well couplets MW-4S/D, MW-7S/D, and MW-8S/D, which serve as Site perimeter monitoring locations. The well couplets installed in January 2020 were selected to provide additional well coverage for post-remediation groundwater quality monitoring at locations positioned around the ISS mass, and at locations between the ISS mass and the Patchogue River. The screens of the monitoring wells provide coverage across the vertical extent of the ISS mass. Monitoring well construction logs for the well couplets installed in January 2020 were provided in Appendix C of the "Site Management Plan" (BC, February 2022).

Groundwater monitoring prior to remedy implementation was conducted on a semi-annual basis; however, the sampling frequency was temporarily increased to quarterly to evaluate the effectiveness of the remedy for Calendar Years 2020 and 2021. Following completion of eight quarters of post-remediation monitoring and evaluation of the data, National Grid proposed several modifications to the long-term post-remedial groundwater monitoring program for the Site for review and approval by the NYSDEC. Specifically, based on the results of the 2020 and 2021 quarterly monitoring activities, the following modifications were proposed in the Fourth Quarter 2021 Groundwater Monitoring Report (BC, March 2022):

- Elimination of deeper monitoring wells from groundwater monitoring program: Monitoring of the deep groundwater (8 well locations) is no longer warranted. Eight quarters of groundwater sampling have been conducted since completion of remedy implementation. MGP-related constituents were not detected or detected at very low levels (below New York State Class GA groundwater quality criteria) in the deep groundwater wells during these eight sampling events.
- Removal of methyl tertiary-butyl ether from analyte list: This non MGP-related constituent has only been detected several times dating back to 2011 at very low concentrations below its Class GA Criterion at a single location (MW-8S) and thus, removal of this constituent from the analyte list was recommended.

• Changing the frequency of groundwater monitoring from quarterly to semi-annually: Tables 3 and 4 of the above-referenced report provide historical total benzene, toluene, ethylbenzene, and isomers of xylene (BTEX) compounds and total polycyclic aromatic hydrocarbon (PAH) concentration data, respectively, and based on a review of the 2020 and 2021 data in these tables, it is evident that the concentrations of more mobile constituents (i.e., BTEX compounds) increased shortly after completion of the remedy followed by increases in concentrations of less mobile PAH compounds in wells downgradient of the ISS mass. The BTEX concentrations have decreased throughout Calendar Years 2020 and 2021, while the PAH concentrations appear to have plateaued and are anticipated to decrease following this plateau. Sampling on a semi-annual basis is adequate for assessing groundwater quality conditions at the Site.

The NYSDEC approved the above-recommended modifications in an email dated April 13, 2022, with the exception of, allowing the removal of deep monitoring well locations MW-12D and MW-13D from the monitoring program. Monitoring of both shallow and deep groundwater downgradient of the ISS monolith at these two monitoring well locations will continue as part of the semi-annual groundwater monitoring events.

Section 2

Scope of Work

Field activities for the first half 2022 semi-annual groundwater monitoring were conducted by BC from June 14 through June 16, 2022. The activities conducted during this monitoring event are described below. Locations of the monitoring wells and staff gauges referenced below are depicted on Figure 1.

Prior to groundwater sampling, water level measurements and NAPL gauging was performed in the monitoring wells associated with the Site. The level of the Patchogue River was measured during the June 2022 sampling event from surface water elevation control point SG-1. Water level measurements and NAPL gauging were conducted using an electronic oil/water interface probe; measurements were made to the nearest 0.01 foot.

Groundwater sampling was conducted at 12 monitoring wells (MW-1, MW-3, MW-4S, MW-7S, MW-8S, MW-10S, MW-11S, MW-14S; and well couplets MW-12S/D and MW-13S/D) following the water level and NAPL gauging activities using low-flow purging and sampling techniques in accordance with the United States Environmental Protection Agency (USEPA) protocol (USEPA, July 1996, Revised September 2017). Samples were submitted to Eurofins Lancaster Laboratories Environmental (Lancaster) located in Lancaster, Pennsylvania. Lancaster is certified (Certification No. 10670) through the New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP).

The groundwater samples were analyzed for: BTEX compounds using USEPA SW-846 Method 8260C, and PAHs using USEPA SW-846 Method 8270D. The selective ion monitoring (SIM) component of the 8270 analysis was also performed on the samples to obtain lower detection limits for certain PAH compounds. The groundwater samples were also analyzed in the field for pH, specific conductivity, temperature, turbidity, oxidation-reduction potential, and dissolved oxygen (see Appendix A for field data sheets).

The laboratory report from Lancaster is provided in Appendix B. Laboratory analytical data were provided to BC in electronic form by Lancaster and have been incorporated into the environmental database maintained by BC for the Site.

In addition to the samples described above, quality assurance/quality control (QA/QC) samples were also collected. The QA/QC samples included: trip blanks (one per cooler containing samples for BTEX analysis), a field duplicate, and an equipment blank. Also, extra sample volume was collected from one location to provide for matrix spike/matrix spike duplicate (MS/MSD) analysis. The trip blank sample was analyzed for BTEX only. The other QA/QC samples were analyzed for BTEX and PAHs.

The groundwater analytical data packages were validated by Jaclyn Lauer of BC. Ms. Lauer's qualifications and experience as a data validator are included in Appendix C. A DUSR was prepared for the groundwater data packages (see Appendix D). Overall, the analytical data for the groundwater monitoring were determined to be usable for the intended purposes; however, a few results (i.e., BTEX data for sidegradient well MW-7S) were rejected (for not meeting headspace preservation requirements) during the validation process. As noted in the DUSR, some data was qualified as follows:

Holding times were achieved for all analyses with the exception of MW-3-20220616. Sample MW-3
was re-analyzed two times outside of hold time to achieve surrogate results within control limits. The
first two analyses are used for comparison purposes and are not reportable. The final analysis is
used for reporting purposes and is qualified as estimated, J/UJ.

Section 3

Results and Findings

3.1 Water Level Data

Table 1 provides the water level data and calculated water elevations from the June 14, 2022 measurements. Figure 1 illustrates the elevation contours of the water table based on these data. The contours were developed using water level elevation data from the shallow monitoring wells (i.e., those with screens that straddle, or are just below, the water table) considered representative of the water table, and the staff gauges in the Patchogue River. The groundwater elevation (hydraulic head) values for the wells screened in deeper intervals are also posted for reference on Figure 1. The water table is relatively shallow and is typically positioned in the fill that overlies the native alluvial deposits and outwash deposits and that overlies the ISS mass. The water table contours indicate that lateral groundwater flow is from the northwest to the south and southeast across the Site toward the Patchogue River.

3.2 NAPL Gauging

Table 1 presents the results of the NAPL gauging conducted in the monitoring wells associated with the Site during the June 2022 groundwater monitoring event. NAPL was not identified in any of the Site monitoring wells during the June 14, 2022 gauging activities.

3.3 Groundwater Quality Data

Table 2 provides the results of the laboratory analyses of the groundwater samples collected during the June 2022 monitoring event and a comparison of the data to the New York State Class GA groundwater quality criteria (i.e., New York State Codes, Rules and Regulations (NYCRR) Part 703 groundwater standards for Class GA water (groundwater) or, for constituents with no standard, the corresponding guidance value from Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1). Comparisons of total BTEX and total PAH concentrations from this sampling event to previous sampling events are provided as Tables 3 and 4, respectively.

Groundwater samples were collected from the 12 monitoring wells listed in Table 2 from June 14 to June 16, 2022 and submitted to the laboratory for analysis of BTEX and PAHs. At wells MW-3, MW-4S, MW-11S, and MW-13S, concentrations of acenaphthene (MW-3, MW-4S, and MW-11S), benzene (MW-13S), and naphthalene (MW-3 and MW-13S) were detected at concentrations above the Class GA groundwater quality criteria. These constituents are considered site related and potentially mobile in groundwater. The presence of these constituents in groundwater at these locations is an expected result of the disturbance of the subsurface during implementation of the ISS, and the elevated concentrations are expected to decrease with time. In these wells, one or more the following PAH compounds were also detected at concentrations above Class GA groundwater quality criteria: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene. As discussed further below in this section, these PAHs have very low aqueous solubilities, and their detection may not represent constituents that are mobile in groundwater.

Prior to remediation in the area downgradient of the MGP-related source materials, these constituents were either not detected or detected at concentrations below Class GA groundwater quality criteria in the

wells that were in place prior to remedy implementation. Overall, the concentrations have decreased somewhat since post-remediation monitoring was initiated in March 2020 (see constituent concentration trend plots presented as Figures 2 through 6) and are anticipated to further decrease with time and will be evaluated during subsequent monitoring events.

As described above in Section 3.1, groundwater flow is from the northwest to the south and southeast across the Site toward the Patchogue River. The concentrations of some of the constituents that were detected and potentially mobile in the dissolved phase (benzene and ethylbenzene) were below applicable surface water quality criteria listed in the New York State Ambient Water Quality Standards and Guidance Values (NYSDEC, June 1998 with Addenda dated April 2000 and June 2004) that are applicable to the Patchogue River (the portion of the Patchogue River proximal to the Site is classified as a Class C water body per 6 NYCRR Part 897). Therefore, they do not have the potential to impact surface water quality in the Patchogue River. However, the concentration of one or more of the following seven constituents were detected above their respective applicable surface water quality criteria in downgradient monitoring wells proximal to the river (MW-3 and MW-4S): acenaphthene, benzo(a)anthracene, benzo(a)pyrene, fluorene, naphthalene, phenanthrene, and pyrene. Although it was not anticipated that these constituent concentrations would impact surface water quality if they discharged to the river, and that some of these compounds have very low aqueous solubilities and thus low potential for migration (i.e., benzo(a)anthracene and benzo(a)pyrene - see discussion at end of this section), a mass flux analysis was previously conducted (provided in Appendix E) to assess the potential for discharge of Site-related constituents in shallow groundwater to impact water quality in the Patchogue River. The evaluation was conducted by estimating the rate at which a mass of Site-related constituents dissolved in groundwater may be contributing to the surface water in the Patchogue River (i.e., the mass flux of constituents from groundwater to surface water). Based on the analysis, it was determined that the estimated concentrations of acenaphthene, benzo(a)anthracene, benzo(a)pyrene, fluorene, naphthalene, phenanthrene, and pyrene in the river water resulting from the discharge of groundwater from the Site were below applicable surface water quality criteria. The details of these constituent mass flux analyses are presented in Appendix E; the results are summarized below.

The concentrations of acenaphthene, benzo(a)anthracene, benzo(a)pyrene, fluorene, naphthalene, phenanthrene, and pyrene in the June 2022 samples were similar (within the same order of magnitude) to those in the 2020 samples, yet the concentrations appear to be either stabilizing or trending downwards (see groundwater quality trend plots for select constituents presented as Figures 2 through 6). Since the estimated concentrations of these seven constituents in surface water, as derived from the previous mass flux analyses, were below applicable surface water criteria, based on the mass flux analyses using the 2020 data (see Appendix E), an additional estimation of concentrations of these constituents in the river is not necessary. Based on the evaluation conducted, Site-related constituents in shallow groundwater do not impact surface water quality in the Patchogue River.

In addition to the above-described detections at wells MW-3, MW-4S, MW-11S, and MW-13S, PAH compounds were also detected in samples collected from monitoring wells MW-7S, MW-8S, MW-12S, and MW-12D at low concentrations (i.e., at or slightly above the laboratory method detection limit), but above the Class GA groundwater quality criteria, during the June 2022 monitoring event. The PAH compounds that were identified in the groundwater samples from these sampling locations at concentrations above the Class GA groundwater quality criteria include one or more of the following five compounds: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, and chrysene. These PAH compounds have very low aqueous solubilities, are not readily mobile in groundwater, and are unlikely to have migrated from the on-Site source area. The criteria that were exceeded for four of these five PAHs are unpromulgated guidance values rather than 6 NYCRR Part 703 standards. The criteria for the fifth PAH, benzo(a)pyrene, is a Part 703 standard. The standard for benzo(a)pyrene is "non-detect" and the guidance value for the other four PAHs, 0.002 micrograms per

liter (μ g/L), is approximately an order of magnitude below the method detection limit. Therefore, any detection of these compounds in groundwater will result in an exceedance. The detection of these constituents in the monitoring locations is likely related to the disturbance of fine or colloid sized particles during purging or sampling activities. These particles are derived from within the well or the soil adjacent to the well that become suspended into the water column of the well as a result of disturbance during purging and sampling activities.

As discussed in previous monitoring reports, following implementation of the remedy, pH levels in two wells downgradient of and proximal to the ISS mass were found to have pH levels above the Class GA criteria range of 6.5 to 8.5. Specifically, after remedy implementation, monitoring data showed that the pH level in MW-3 began to increase above levels from prior to remedy implementation (typically ±6.9), up to levels as high as 11.09. Also, samples from well MW-13S, installed at the end of remedy implementation, showed an increase in pH levels, up to levels as high as 9.88. The increased pH levels are considered a potential effect from implementation of ISS in the area and are anticipated to decrease to pre-remedy levels with time (i.e., as ISS mass continues to fully cure). Due to the low permeability of the ISS mass, the flux of groundwater in the area immediately downgradient of the ISS mass (proximal to well locations MW-3 and MW-13S) is greatly reduced. This is consistent with the findings from the groundwater flow model developed during the remedial design). Thus, the rate at which the groundwater with an elevated hydroxide ion concentration (i.e., elevated pH) is flushed from this area is expected to be very low. The presence of new asphalt pavement over this area likely further contributes to the reduction in flushing due to decreased infiltration of precipitation. This, coupled with the uncertainty regarding the timeframe over which the Portland-cement-based ISS material can generate elevated pH levels in close proximity to the ISS mass. The pH levels at these two locations have been generally declining since they reached their maximum values in April 2021 (MW-13S) and September 2021 (MW-3). Although the increased pH levels in groundwater are not anticipated to impact surface water quality in the Patchogue River, similar to the evaluations conducted for certain PAHs dissolved in groundwater to potentially effect surface water quality, an analysis was previously conducted to evaluate the potential for the increased pH levels to effect surface water quality in the river. The details of this pH mass flux analysis are presented in Appendix F. Since the pH levels measured in MW-3 and MW-13S in June 2022 are within an order of magnitude or less to the levels measured in December 2020 and the estimated pH level in surface water (based on the December 2020 field measurements) was below applicable surface water criteria, an additional estimation of the pH level in the river is not necessary. Based on the evaluation conducted, the increased pH levels in shallow groundwater do not impact surface water quality in the Patchogue River.

Section 4

Summary and Conclusions

The following is a summary of the findings and conclusions associated with the June 2022 groundwater monitoring event.

- NAPL was not identified in any of the Site monitoring wells during the June 2022 gauging activities.
- Consistent with other monitoring events conducted after remedy implementation, concentrations of
 one or more of the following constituents: acenaphthene, benzene and naphthalene were detected
 at concentrations above the Class GA groundwater quality criteria in wells MW-3, MW-4S, and
 MW-13S. The presence of these Site-related constituents is an expected result of the disturbance of
 the subsurface during implementation of the ISS. Overall, these concentrations have decreased
 somewhat since post-remediation monitoring was initiated in March 2020 and are anticipated to
 further decrease with time and will be evaluated during subsequent monitoring events.
- The concentrations of Site-related constituents detected in groundwater at the Site are not
 impacting surface water quality in the Patchogue River based on an evaluation of the mass flux of
 constituents in groundwater to the river.
- Increased pH levels in groundwater immediately downgradient of the ISS mass are considered a potential effect from implementation of ISS in the area. The pH levels have slowly decreased since the initiation of post-remediation monitoring and are anticipated to further decrease to pre-remedy levels with time. The increased pH levels measured in groundwater at the Site are not impacting surface water quality in the Patchogue River based on a mass flux analysis.

Section 5

References

- Brown and Caldwell Associates, February 2022, Site Management Plan, Patchogue Former MGP Site, Village of Patchogue, Suffolk County, New York, Site ID No. 1-52-182.
- Brown and Caldwell Associates, February 2022, Final Engineering Report, Patchogue Former MGP Site, Village of Patchogue, Suffolk County, New York, Site ID No. 1-52-182.
- Brown and Caldwell Associates, May 2019, Remedial Design Report (100% Submission), Patchogue Former MGP Site, Village of Patchogue, Suffolk County, New York, Site ID No. 1-52-182.
- Brown and Caldwell Associates, December 2012, Construction Completion Report Utility Corridor Work Plan Implementation, Patchogue Former MGP Site, Village of Patchogue, Suffolk County, New York, Site ID No. 1-52-182.
- NYSDEC, CP-43: Groundwater Monitoring Well Decommissioning Policy, November 2009).
- Tetra Tech EC, Inc, December 2009. Final Remedial Investigation Report for the Patchogue Former MGP Site, Patchogue, Suffolk County, New York.
- USEPA, July 1996; Revised September 2017. Low-Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells.

Tables

TABLE 1 WATER ELEVATIONS AND NAPL MONITORING DATA FIRST HALF 2022 SEMI-ANNUAL GROUNDWATER MONITORING EVENT PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

			6/14/	<u> 2022</u>	
	Top of				
	Casing	Depth to	Water	Depth to	Total Depth
Location ID	Elevation	Water	Elevation	NAPL	of Well
	(ft., NAVD)	(ft., BTOC)	(ft., NAVD)	(ft., BTOC)	(ft., BTOC)
MW-1	11.47	5.75	5.72	NI	15.17
MW-3	5.56	1.65	3.91	NI	10.09
MW-4S	7.97	4.66	3.31	NI	12.24
MW-4D	7.79	4.42	3.37	NI	26.65
MW-7S	8.45	4.30	4.15	NI	12.40
MW-7D	8.31	4.16	4.15	NI	28.11
MW-8S	5.01	0.69	4.32	NI	
MW-8D	4.99	0.66	4.33	NI	25.07
MW-10S	5.77	1.01	4.76	NI	15.55
MW-10D	5.73	0.99	4.74	NI	25.39
MW-11S	5.02	0.79	4.23	NI	13.75
MW-11D	5.14	0.92	4.22	NI	23.57
MW-12S	4.99	1.40	3.59	NI	13.93
MW-12D	4.92	1.32	3.60	NI	23.88
MW-13S	4.98	1.32	3.66	NI	13.29
MW-13D	4.96	1.30	3.66	NI	23.95
MW-14S	4.86	0.85	4.01	NI	12.62
MW-14D	4.82	0.89	3.93	NI	22.03
SG-1	5.38	3.83	1.55	NA	NA
SG-2	5.25			NA	NA

Notes:

NAVD - North American Vertical Datum 1988

ft. - Feet

BTOC - Below Top of Casing

NA - Not Applicable

NI - NAPL not Indicated by Oil/Water Interface Probe

--- Not measured MW - monitoring well SG - staff gauge

TABLE 2

GROUNDWATER ANALYTICAL RESULTS

FIRST HALF 2022 SEMI-ANNUAL GROUNDWATER MONITORING EVENT

PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

	Class CA Crou	ındwater Criteria															
	TOGS 1.1.1	NYS Part 703		Loc ID	MW-1	MW-3	MW-3 (Dup)	MW-4S	MW-7S	MW-8S	MW-10S	MW-11S	MW-12S	MW-12D	MW-13S	MW-13D	MW-14S
Constituent	Guidance	Standard	Units	Date	6/14/2022	6/16/2022	6/16/2022	6/16/2022	6/15/2022	6/15/2022	6/14/2022	6/15/2022	6/15/2022	6/15/2022	6/16/2022	6/16/2022	6/14/2022
Volatile Organic Compound		Januara	0	5410	0/11/2022	0, 10, 2022	0, 10, 2022	0, 10, 2022	0, 10, 2022	0, 10, 2022	0/ 1 1/ 2022	0, 10, 2022	0/ 10/ 2022	0, 10, 2022	0/ 10/ 2022	0/ 10/ 2022	0/ 1 1/ 2022
BTEX Compounds																	
Benzene	NE	1	μg/L		0.30 U	0.62 J	0.55 J	0.30 U	0.31 J	0.30 U	0.30 U	0.90 J	0.30 U	0.30 U	1,30	0.30 U	0.30 U
Toluene	NE	5	μg/L		0.40 U	2.10	1.60	0.40 U	0.40 UR	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.91 J	0.40 U	0.40 U
Ethylbenzene	NE	5	μg/L		0.20 U	0.7 J	0.7 J	0.20 U	0.20 UR	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.52 J	0.20 U	0.20 U
Xylenes, Total	NE	NE	μg/L		0.40 U	1.8	1.2	0.40 U	0.40 UR	0.40 U	0.40 U	0.89 J	0.40 U	0.40 U	1.00	0.40 U	0.40 U
Total BTEX ^(a)	NE	NE	μg/L		ND	3.90	2.80	ND	0.31	ND	ND	1.79	ND	ND	3.73	ND	ND
			PO/ -														
Semi-Volatile Organic Com	npounds (SVOCs)																
Polycyclic Aromatic Hydroc	arbons (PAHs)				-												
Acenaphthene	20	NE	μg/L		0.010 U	33 J	33	30	0.160	0.16	0.010 U	49	0.048 J	0.015 J	18.0	0.010 U	0.61
Acenaphthylene	NE	NE	μg/L		0.010 U	4.0 J	4.2	0.01 U	0.037 J	0.010 U	0.010 U	0.9	0.010 U	0.010 U	0.72	0.010 U	0.021 J
Anthracene	50	NE	μg/L		0.010 U	1.8 J	1.6	0.23	0.091	0.010 U	0.010 U	2.6	0.011 J	0.018 J	1.7	0.010 U	0.026 J
Benzo(a)anthracene	0.002	NE	μg/L		0.010 U	0.79 J	0.72	0.019 J	0.075	0.035 J	0.010 U	1.50	0.014 J	0.016 J	0.27	0.010 U	0.013 J
Benzo(a)pyrene	NE	0	μg/L		0.010 U	0.100 UJ	0.010 U	0.014 J	0.047 J	0.026 J	0.010 U	0.56	0.010 U	0.011 J	0.013 J	0.010 U	0.013 J
Benzo(b)fluoranthene	0.002	NE	μg/L		0.010 U	0.100 UJ	0.011 J	0.029 J	0.059	0.046 J	0.010 U	1.10	0.014 J	0.016 J	0.020 J	0.010 U	0.012 J
Benzo(g,h,i)perylene	NE	NE	μg/L		0.010 U	0.100 UJ	0.010 U	0.012 J	0.037 J	0.025 J	0.010 U	0.55	0.010 U				
Benzo(k)fluoranthene	0.002	NE	µg/L		0.010 U	0.100 UJ	0.010 U	0.012 J	0.059	0.017 J	0.010 U	0.36	0.011 J	0.010 U	0.010 U	0.010 U	0.010 U
Chrysene	0.002	NE	μg/L		0.010 U	0.42 J	0.40	0.015 J	0.062	0.042 J	0.010 U	1.60	0.013 J	0.017 J	0.18	0.010 U	0.015 J
Dibenzo(a,h)anthracene	NE	NE	μg/L		0.020 U	0.200 UJ	0.020 U	0.020 U	0.050 J	0.020 U	0.020 U	0.100	0.020 U				
Fluoranthene	50	NE	μg/L		0.010 U	14 J	14	4.1	0.087	0.068	0.010 U	7.5	0.020 J	0.041 J	2.1	0.011 J	0.027 J
Fluorene	50	NE	μg/L		0.011 J	9 J	10	8.4	0.130	0.010 U	0.010 U	3.5	0.017 J	0.028 J	3.5	0.010 U	0.120
Indeno(1,2,3-cd)pyrene	0.002	NE	µg/L		0.020 U	0.200 UJ	0.020 U	0.020 U	0.046 J	0.025 J	0.020 U	0.51	0.020 U				
Naphthalene	10	NE	µg/L		0.030 U	84 J	84	0.030 U	0.150	0.030 U	0.030 U	3.4	0.030 U	0.030 U	36	0.030 U	0.300
Phenanthrene	50	NE	µg/L		0.030 U	11 J	11	0.10	0.130	0.088	0.030 U	1.90	0.030 U	0.075	3.5	0.030 U	0.100
Pyrene	50	NE	µg/L		0.010 U	16 J	18	5.8	0.092	0.079	0.010 J	12.0	0.037 J	0.044 J	2.2	0.013 J	0.034 J
Total PAHs ^(D)	NE	NE	μg/L		0.011	174	177	49	1.31	0.61	0.010	87	0.185	0.281	68	0.024	1.29

Notes:
BTEX: benzene, toluene, ethylbenzene and isomers of xylene.
TOGS - Technical and Operational Guidance Series
U - The analyte was analyzed for, but was not detected above the sample reporting limit. Value shown is representative of method detection limit for the analyzed constituent.

Value shown is representative of method detection limit for the analyzed constituent.

J - Estimated concentration. The result is below the reporting limit but above the method detection limit.

R - Rejected concentration. The result can be used for comparison puproses to historical data only.

yg/L - micrograms per liter

ND - Not detected.

NE - Not established.

(a) - To calculate total BTEX concentration, a value of zero is used for non-detect values.
(b) - To calculate total PAH concentration, a value of zero is used for non-detect values.

Brown AND Caldwell Tab_2_GW_Results_20220801.xlsx\Tab_2 8/22/2022

TABLE 3
SUMMARY OF HISTORICAL BTEX CONCENTRATIONS
PATCHOGUE FORMER MGP SITE
PATCHOGUE, NEW YORK

						Tota	I BTEX Conce	ntrations (µg/	′L) ^(a)					
Sampling Date							Monito	ring Well						
ľ	MW-1	MW-2S	MW-2D	MW-3	MW-4S	MW-4D	MW-5	MW-6	MW-7S	MW-7D	MW-8S	MW-8D	MW-9S	MW-9D
Mar-08	0	0	0	0	3.4	0	1016	57	NS	NS	NS	NS	NS	NS
Jul-08	NS	0	0	0	0	0	678	0	0	0	0	0	0	0
Mar-09	0	0	0	0	0	0	975	0	0	1	0	0	0	0
Sep-09	0	0	0	0	0	0	1257	1	0	0	0	0	0	0
Mar-10	0	0	0	0	0	0	637	2	0	9	0	0	0	0
Sep-10	0	0	0	0	0	0	NS	0	0	0	0	0	27	0
Jan-11	1.7	0	0	0	0	0	NS	NS	0	0	0	0	1	0
Apr-11	0	0	0	0	0	0	NS	NS	0	0	0	0	0	0
Aug-11	0	0	0	0	0	0	NS	NS	0	0	0	0	0	0
Nov-11	0	0	0	0	0	0	NS	NS	0	0	0	0	0	0
Feb-12	0	0	0	0	0	0	NS	NS	0	0	0	0	0	0
May-12	0	0	0	0	0	0	NS	NS	0	0	0	0	0	0
Nov-12	0	^(b)	^(a)	0	12	0	NS	NS	1	0	0	0	NS	NS
Jun-13	0	^(b)	^(b)	0	0.8	0	NS	NS	0.7	0	0	0	0	NS
Dec-13	0	^(b)	^(b)	NS	0	0	NS	NS	0.8	0	0	0	NS	NS
Jun-14	0	^(b)	^(b)	0	0	0	NS	NS	0.8	0	0	0	NS	NS
Dec-14	0	^(b)	^(b)	0	0	0	NS	NS	1.3	0	0	0	0	0
Jun-15	0	^(b)	^(b)	0	0	0	NS	NS	0	0	0	0	0	0
Dec-15	0	^(b)	^(b)	0	0	0	NS	NS	0.5	0	0	0	0	0
Jun-16	0	^(b)	^(b)	0	0	0	NS	NS	0	0	0	0	0	0
Dec-16	0	^(b)	^(b)	0	0	0	NS	NS	0	0	0	0	0	0
Jun-17	0	^(b)	^(b)	0	0	0	NS	NS	0	0	0	0	0	0
Dec-17	0	^(b)	(b)	0	0	0	NS	NS	0	0	0	0	0	0
Jun-18	0	(b)	(b)	0	0	0	NS	0	0	0	0	0	0	0
Dec-18	0	(b)	^(b)	0	0	0	NS	NS	0	0	0	0	0	0
Mar-20	0	^(b)	^(b)	35	4.3	0	(c)	(c)	0.4	0	0	0	(c)	^(c)
Jun-20	0	^(b)	^(b)	18	2	0	^(c)	(c)	0	0	0	0	(c)	(c)
Sep-20	0	(b)	^(b)	20	2	0	^(c)	^(c)	0.4	0	0	0	(c)	(c)
Dec-20	0	^(b)	^(b)	19	1	0	^(c)	^(c)	0	0	0	0	^(c)	^(c)

TABLE 3 SUMMARY OF HISTORICAL BTEX CONCENTRATIONS PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

						Tota	I BTEX Conce	ntrations (µg/	′L) ^(a)					
Sampling Date							Monito	ing Well						
	MW-1	MW-2S	MW-2D	MW-3	MW-4S	MW-4D	MW-5	MW-6	MW-7S	MW-7D	MW-8S	MW-8D	MW-9S	MW-9D
Mar-21	0	^(b)	^(b)	10.2	0.6	0	^(c)	^(c)	0.3	0	0	0	^(c)	^(c)
Jun-21	0	^(b)	^(b)	8.4	0.7	0	^(c)	^(c)	0.34	0	0	0	^(c)	^(c)
Sep-21	0	^(b)	^(b)	8.7	1.0	0	^(c)	^(c)	0	0	0	0	^(c)	^(c)
Dec-21	0	^(b)	^(b)	12	0.3	0	^(c)	^(c)	0.31	0	0	0	^(c)	^(c)
Jun-22	0	^(b)	^(b)	3.9	0	NS	^(c)	^(c)	0.31	NS	0	NS	^(c)	^(c)
Minimum	0	0	0	0	0	0	637	0	0	0	0	0	0	0
Maximum	1.7	0	0	35	12	0	1257	57	1.3	9.0	0	0	27	0
Mean	0.1	0	0	4.1	0.8	0	913	8.6	0.22	0.3	0	0	1.3	0

Notes:

BTEX - Benzene, toluene, ethylbenzene and isomers of xylene

μg/L - micrograms per liter

NS - Not sampled.

NI - Monitoring well or piezometer not installed at time of sampling.

(a) - To calculate total BTEX concentration, a value of zero is used for non-detect values.

(b) - Monitoring well was decommissioned on 6/4/12 as part of the Utility Corridor Construction activities. See "Construction Completion Report, Utility Corridor Work Plan Implementation" (BC, December 2012).

(c) - Monitoring well/piezometer was decommissioned on 6/13/19 as part of pre-remedial construction activities in accordance with the "Remedial Design Report (100% Submittal)" (BC, May 2019) and "CP-43: Groundwater Monitoring Well Decommissioning Policy" (NYSDEC, November 2009).

TABLE 3 SUMMARY OF HISTORICAL BTEX CONCENTRATIONS PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

					Total BTEX	Concentratio	ns (µg/L) (a)				
Sampling Date					Monito	ing Well/Piez	ometer				
	MW-10S	MW-10D	MW-11S	MW-11D	MW-12S	MW-12D	MW-13S	MW-13D	MW-14S	MW-14D	PZ-4A
Mar-08	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Jul-08	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Mar-09	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Sep-09	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Mar-10	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Sep-10	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Jan-11	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Apr-11	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Aug-11	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Nov-11	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Feb-12	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
May-12	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Nov-12	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Jun-13	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Dec-13	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Jun-14	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	0
Dec-14	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NS
Jun-15	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NS
Dec-15	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NS
Jun-16	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NS
Dec-16	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NS
Jun-17	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NS
Dec-17	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NS
Jun-18	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NS
Dec-18	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NS
Mar-20	0	0	4	0	0	0	37	0	0	0	(c)
Jun-20	0	0	2.7	0	0	0	25	0	0.73	0	^(c)
Sep-20	0	0	1.9	0	0	0	26	0	0	0	^(c)
Dec-20	0	0	0	0	0	0	6.9	0	0	0	^(C)

TABLE 3 SUMMARY OF HISTORICAL BTEX CONCENTRATIONS PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

					Total BTEX	Concentratio	ns (µg/L) (a)				
Sampling Date					Monito	ring Well/Piez	zometer				
	MW-10S	MW-10D	MW-11S	MW-11D	MW-12S	MW-12D	MW-13S	MW-13D	MW-14S	MW-14D	PZ-4A
Mar-21	0	0	1.3	0	0	0	4	0	0	0	^(c)
Jun-21	0.22	0	1.6	0	0	0	5.3	0	0	0	^(c)
Sep-21	0	0	0	0	0	0	3.9	0	0	0	^(c)
Dec-21	0	0	1.9	0	0	0	0	0	0	0	^(c)
Jun-22	0	NS	1.8	NS	0	0	3.7	0	0	NS	^(c)
Minimum	0	0	0	0	0	0	0	0	0	0	0
Maximum	0.22	0	4.0	0	0	0	37	0	0.73	0	0
Mean	0.02	0	1.7	0	0	0	12	0	0.1	0	0

Notes:

BTEX - Benzene, toluene, ethylbenzene and isomers of xylene

µg/L - micrograms per liter

NS - Not sampled.

NI - Monitoring well or piezometer not installed at time of sampling.

(a) - To calculate total BTEX concentration, a value of zero is used for non-detect values.

(b) - Monitoring well was decommissioned on 6/4/12 as part of the Utility Corridor Construction activities. See "Construction Completion Report, Utility Corridor Work Plan Implementation" (BC, December 2012).

(c) - Monitoring well/piezometer was decommissioned on 6/13/19 as part of pre-remedial construction activities in accordance with the "Remedial Design

TABLE 4
SUMMARY OF HISTORICAL PAH CONCENTRATIONS
PATCHOGUE FORMER MGP SITE
PATCHOGUE, NEW YORK

Sampling Date	MW-2D 0 0	MW-3 0.76	MW-4S	MW-4D		ing Well						
	0 0			MW-4D								
Mar-08 0 0	0	0.76		יייייייייייייייייייייייייייייייייייייי	MW-5	MW-6	MW-7S	MW-7D	MW-8S	MW-8D	MW-9S	MW-9D
			0.6	4.3	1774	214	NS	NS	NS	NS	NS	NS
Jul-08 NS 0.7	^	0	8	0	1799	154	0	0.47	0	0	12	0
Mar-09 0 0	0	0	0	0	2730	0	0	0	0	0	0	0
Sep-09 0 0	0	0	0	0	3373	1	0	0	0	0	0	0
Mar-10 0 0	0	0	0	39	2390	17	0	0	22	0	2	0
Sep-10 0 0	0	128	0	6	NS	14	0	0	11	0	396	0
Jan-11 22 0	0	17	0	12	NS	NS	0	0	6	0	42	5
Apr-11 0 0	0 0.1	6 14	0 0.1	20 0	NS NS	NS NS	0 0	0 0	0 0.4	0 0	9 16	0 1.2
Aug-11 0 0 Nov-11 0 0	0.1	10	0.1	0	NS NS	NS NS	0	0	0.4	0.2	8	3.4
Feb-12 0.2 0	0.2	6	0.4	4	NS	NS NS	0.1	0	0.6	0.2	5	2.9
May-12 0.4 0.1	0.6	5	0.0	5.8	NS	NS	0.1	0.3	1	0	6	2.8
Nov-12 0.1 (b)	(b)	5.6	0.4	11.7	NS	NS	2.5	2.6	0.8	1.2	NS	NS
Jun-13 0.8 ^(b)	^(b)	NS	0.3	3.7	NS	NS	1.3	0.4	0.4	0.6	2	NS
Dec-13 0.6 (b)	(b)	NS	0.5	2.5	NS	NS	0.8	0.4	0.4	0.0	NS	NS
Jun-14 0 (b)	(b)	2.2	0.9		NS NS	NS		0.4			NS	
	(b)			0		_	0.8		0.2	0	_	NS
011		1.2	0.4	0	NS	NS	3	0	0.1	0	21	0.3
Juli 10	^(b)	1.1	0.9	0	NS	NS	0.9	0	0.3	0	10	0.3
Dec-15 0 ^(b)	^(b)	0	0	0	NS	NS	0.9	0	0	0	3.9	0
Jun-16 0 ^(b)	^(b)	1.9	0.8	0	NS	NS	2.5	0	0	0	5.9	0
Dec-16 0 ^(b)	^(b)	0.02	0	0.1	NS	NS	0	0	0	0	5.5	0.07
Jun-17 0 ^(b)	^(b)	2.0	0.5	0	NS	NS	1	0	0	0	3.2	0
Dec-17 0 ^(b)	^(b)	0.53	0	0.031	NS	NS	0	0.11	0	0.017	6.0	0.14
Jun-18 0 ^(b)	^(b)	3.1	1.1	0.010	NS	53	0.02	0.01	0.08	0.09	7.4	0.55
Dec-18 0.31 ^(b)	^(b)	1.5	1.2	0.080	NS	NS	0.08	0.05	0.10	0.13	7.9	1.0
Mar-20 0 ^(b)	^(b)	20	17	0.21	(c)	^(c)	0.32	0	0.09	0	(c)	(c)
Jun-20 0 ^(b)	^(b)	179	37	0	^(c)	(c)	0.14	0	0.11	0	(c)	(c)
Sep-20 0 (b)	^(b)	336	41	0	(c)	(c)	0.14	0	0.21	0	(c)	(c)
Dec-20 0 (b)	(b)	333	33	0	(c)	(c)	0	0	0.21	0	(c)	(c)

TABLE 4 SUMMARY OF HISTORICAL PAH CONCENTRATIONS PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

						Tota	al PAH Concer	trations (µg/	(L) ^(a)					
Sampling Date							Monitor	ıng Well						
	MW-1	MW-2S	MW-2D	MW-3	MW-4S	MW-4D	MW-5	MW-6	MW-7S	MW-7D	MW-8S	MW-8D	MW-9S	MW-9D
Mar-21	0	^(b)	^(b)	172	24.2	0	^(c)	^(c)	0.26	0	0.11	0.043	^(c)	^(c)
Jun-21	0	^(b)	^(b)	177	68.1	0	^(c)	^(c)	0.18	0	0.20	0	^(c)	^(c)
Sep-21	0.1	^(b)	^(b)	223	16.4	0	^(c)	^(c)	0.07	0	0.18	0.111	^(c)	^(c)
Dec-21	0.011	^(b)	^(b)	234	40	0.011	^(c)	^(c)	0.140	0.039	0.512	0.219	^(c)	^(c)
Jun-22	0.011	^(b)	^(b)	177	49	NS	^(c)	^(c)	1.3	NS	0.61	NS	^(c)	^(c)
Min	0	0	0	0	0	0	1774	0	0	0	0	0	0	0
Max	22	0.7	0.6	336	68	39	3373	214	3.0	2.6	22	1.2	396	5
Mean	0.7	0.067	0.1	64	10	3.3	2413	65	0.50	0.15	1.4	0.082	27	0.88

Notes:

PAH - Polycyclic aromatic hydrocarbons

μg/L - micrograms per liter

NS - Not sampled.

NI - Monitoring Well or piezometer not installed at time of sampling.

(a) - To calculate total PAH concentration, a value of zero is used for non-detect values.

(b) - Monitoring well was decommissioned on 6/4/12 as part of the Utility Corridor Construction activities. See "Construction Completion Report, Utility Corridor Work Plan Implementation" (Brown and Caldwell, December 2012).

(c) - Monitoring well/piezometer was decommissioned on 6/13/19 as part of pre-remedial construction activities in accordance with the "Remedial Design Report (100% Submittal)" (BC, May 2019) and "CP-43: Groundwater Monitoring Well Decommissioning Policy" (NYSDEC, November 2009).

TABLE 4 SUMMARY OF HISTORICAL PAH CONCENTRATIONS PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

						Concentration	5, ,				
Sampling Date					Monito	ring Well/Pie	zometer				
	MW-10S	MW-10D	MW-11S	MW-11D	MW-12S	MW-12D	MW-13S	MW-13D	MW-14S	MW-14D	PZ-4A
Mar-08	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Jul-08	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Mar-09	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Sep-09	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Mar-10	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Sep-10	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Jan-11	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Apr-11	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Aug-11	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Nov-11 Feb-12	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI NI	NI
May-12											NI
Nov-12	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Jun-13	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Dec-13	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Jun-14	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	0.3
Dec-14	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NS
Jun-15	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NS
Dec-15	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NS
Jun-16	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NS
Dec-16	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NS
Jun-17	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NS
Dec-17	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NS
Jun-18	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NS
Dec-18	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NS
Mar-20	0.3	0.3	96	1.5	14	0	188	0.1	0.5	0.04	^(c)
Jun-20	0	0	63	0	0	0	394	0.11	1.8	0	^(c)
Sep-20	0	0	127	0	0	0	467	0	0.12	0	^(c)
Dec-20	0	0	6.8	0	0.17	0	182	0	1.7	0	(c)

TABLE 4 SUMMARY OF HISTORICAL PAH CONCENTRATIONS PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

					Total PAH	Concentration	ıs (µg/L) ^(a)				
Sampling Date	Date Monitoring Well/Piezometer										
	MW-10S	MW-10D	MW-11S	MW-11D	MW-12S	MW-12D	MW-13S	MW-13D	MW-14S	MW-14D	PZ-4A
Mar-21	0	0	78	0	0.012	0	187	0.037	1.0	0	^(c)
Jun-21	0.016	0.036	79	0.15	0	0	284	0.042	0.055	0.047	^(c)
Sep-21	0.122	0.052	2	0	0	0	140	0.046	0.277	0	^(c)
Dec-21	0.127	0	63	0.033	0.010	0.011	37	0.046	0.244	0.297	^(c)
Jun-22	0.010	NS	87	NS	0.185	0.281	68	0.024	1.29	NS	^(c)
Min	0	0	2.0	0	0	0	37	0	0.055	0	0.3
Max	0.3	0.3	127	1.5	14	0.281	467	0.11	1.8	0.297	0.3
Mean	0.064	0.049	67	0.21	1.6	0.0324	216	0.045	0.81	0.048	0.3

Notes:

PAH - Polycyclic aromatic hydrocarbons

µg/L - micrograms per liter

NS - Not sampled.

NI - Monitoring well or piezometer not installed at time of sampling.

(a) - To calculate total PAH concentration, a value of zero is used for non-detect values.

(b) - Monitoring well was decommissioned on 6/4/12 as part of the Utility Corridor Construction activities. See "Construction Completion Report, Utility Corridor Work Plan Implementation" (Brown and Caldwell, December 2012).

(c) - Monitoring well/piezometer was decommissioned on 6/13/19 as part of pre-remedial construction activities in accordance with the "Remedial Design Report (100% Submittal)" (BC, May 2019) and "CP-43: Groundwater Monitoring Well Decommissioning Policy" (NYSDEC, November 2009).

8/22/2022

First Half 2022 Semi-Annual Groundwater Monitoring Report							
Figures							

Brown AND Caldwell

SCALE: 1" = 60'

153021

DATE: August 23, 2022

NATIONAL GRID PATCHOGUE FORMER MGP SITE VILLAGE OF PATCHOGUE, NEW YORK WATER TABLE ELEVATION CONTOUR MAP JUNE 14, 2022 FIGURE

Appendix A: Field Sampling Data Sheets

Brown AND Caldwell

2 Park Way, Upper Saddle River, NJ 07458 Phone: (201) 574-4700 Fax: (201) 236-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

		4			70 July
Project Name:	Patchoque MGP	St. 5/15	Project Number:	153021	(1,2) constitu
Client:	BC		Date:	06/14/22	
Personnel:	AFV/SFS		Well ID:	MW-1	44
Purge/Sample Depth:	~12'	1111 OH 5	Sample ID:	MN-1-202206	514
	WAS ARREST TATEBURE	K 1016	Harris 1990	29 510	

•		Cert	ified Para	meters	with a R	F 400 110	1	Para Market College	WO 100 115760	
_ Actual Time	pН	Temp (°C)	Cond (mS/cm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)	DTW (ft)	Pumping Rate (mL/min)	Comments	
5: 43 am	5.94	19.90	1.46	1-72	3.4	60	5.94	275		
3:30	(0.20	18.32	1.52	1.07	2.6	30	5.94	-1(14	45	
3:39	(0.32	17.09	1.54	0.59	3.1	-12	5.94	um/i	- W/ + 44 - 44	
3:42	6.33	1674	. 55	0.85	2.3	-26	5.94			
13:45	6.34	16.65	1.57	0.90	2.2	~ 3.5	5.94		PLEASE 3 1988	
13:48	6.34	16.50	1.59	1,01	2.1	-41	5.94	XE E BY	W. 13	
13:51	(=-33	16,44	1.61	1.10	1.3	-45	TAY	= 65	The state of the s	
13:54	6.32	16.32	1.62	1.04	1.0	-48	5.99		***	
12:54	4.30	16-260	1.65	1.04	0.5	-516	5.94	W. 4000	ALE WEST	
14:00	(3)	11.27	1.65	1.84	ð.5	-51	6.94			
14:03	6.28	16.25	1. (-8	1.36	0.4	-22	5.94	d2 V	= 1	
14:06		0	(40)	Direction of the control	TOF W W	4500 THE	2000	4	55. 00 - 2	
	Miss	- 1923	2022	6614	GERT-127		1-38- 7	75 ± 97	5 96 Ex	
	·		(BB)	# %	Hersond as	STATE OF G	0.000	bed a	15H 38F -	
			·		=			30	an Andreas	
			- 111	7		12.2				
			1167		7 111	1 11 11 11	=3365 V	//6/ 2		
_,	7.675(31.34%)	.TI 11					M1468857	-1 00 SERVICES 1	very.	
	0.000	10 Su		\sim	~		pulling 100	No.	See a	
	CHOPACUSTER	Dearth	1/-			arti t	- 11/1/62/19	75 2E 1911A	ne di uni uni	
	 -	120,001	6/	7.		1	north La	W	a laptification	
		0021 8/2	9//		/	Tige I	Property II	inst ST	1940 SO E	
					(1 1/880 000	144	We 5/403	0010098830 0000100	
_				7	λ					
		300			19		19		F 702	
		5)		E (95.9)	S SOVAEL	M. St. 175, 185	
									and the same of the same	
	 	- 10-1	A	#10041 Dill	- 1		THE PARTY		DER DAR COM	
		7 4 3	1 A 2	31.41	E .		You do	2 2 1	11 30 Kulla	
		- 1/9°22°36.3	-	m_#60299-77			1000000			

	-10.7	(No.	76 AFR			- To 1	H - 3	12 2	
	1.4%	1 A 8	200	ling.		X. 87.	7 2	3.72	34, 12 All
							ii.		
Certified Sam Time of Sa	n ple Information ample: ノ ሩ :佐	:) (_		46	Analyst Signature:				
Instrument D	ata:	11 - 1	سبر از	``	-	2			
Man	ata: iufacturer/Model:	HORIBO	14-5	⋖			P. A -		
	Serial No. Unit:	11000	7 KU		Serial No. I	Handheld:	TAHR3	,4MO	
Calibr	ation Date/Time:	06/14	722		-	•	, , , , , , , , , , , , , , , , , , , 		

Are low-flow parameters subject to field lab certification?

Yes No (not required for CERCLA sites or sites outside of NJ) if yes, low-flow data must be accompanied by a completed "Field Calibration Record, Horiba U-52" form or equivalent.

Brown AND ...

SAMPLING FIELD DATA ANLI-1

LOW-FLOW GROUNDWATER

	Upper Saddle River, NJ Office	Sample 1.D.: Mar 1 ~ 2022 6 different from well no.)
	Project: Patchogue MGP Personnel: AFV/SF)	Date: 06/14/22 Time: 13:33 Weather: 5400Y Air Temp.: 767
67	DEPTH TO: Static Water Level:ft Bottom of Web DATUM: □ Top of Protective Casing Top of Well Casing CONDITION: Is Well clearly labeled? □ Yes No Is well selected is Prot. Casing/Surface Mount in Good Cond.? (In Does Weep Hole adequately drain well head? Is Concrete Pad Intact? (not cracked or frost head is Padlock Functional? Yes □ No □ NA Is Inner Casing Properly Capped and Vented?	PVC ☐ Teflon® ☐ Open rock
	VOLUME OF WATER: Standing in well:	To be purged:
	PURGE DATA: METHOD: Bailer, Size: Bladder Pump C Centrifugal Pump Peristaltic Pum	☐ 2" Submersible Pump ☐ 4" Submersible Pump ☐ Inertial Lift Pump ☐ Other:
	MATERIALS: Pump/Bailer: Teflon® Stainless Steel PVC Other: Pumping Rate: Type Pumping Rate:	Teflon® Polyethylene Polypropylene Other: Volume Pumped:
	Was well Evacuated? ⁶ ☐ Yes ☐ No Nu PURGING EQUIPMENT: ☐ Dedicated ※ Prepared Off-s	mibel of frem voidines (temoved,
	SAMPLING DATA: METHOD: Bailer, Size: Syringe Sampler Peristaltic Pump Inert	ubmersible Pump
	MATERIALS: Pump/Bailer: Teflon® Stainless Steel	Tubing/Rope: Teflon® Polyethylene
	SAMPLING EQUIPMENT: Dedicated Prepared Of Metals samples field filtered? Prepared Of Yes No Method	Off-Site Field Cleaned
	APPEARANCE: Up Clear U Turbid U Color: FIELD DETERMINATIONS: See attached form for field param	
	DUP: Yes Name:	
	I certify that this sample was collected and handled in accordance with applicable re-	gulatory and project protocols.
	Signature: ##////////	Date: 0/1/22

Brown AND Caldwell

2 Park Way, Upper Saddle River, NJ 07458 Phone: (201) 574-4700 Fax: (201) 236-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

			N		2			1977	
Pro	iect Name:	Cable	and M	CAP	1H2 CF	Proje	ect Number	153021	r - 14 Calord
	Client:	BC	que r	<u> </u>		,			474
		AFV/				-	Well ID:	MW-105	an importance of
Purge/Sam	nole Denth:	12 11	-1156 3U	PT 111	- Ex -	5965 N	Sample ID:	MW-105-	20.2204.44
	.p.o o op	20,76 J. 1 Barrier	Works applied	edistria en	And Agreem	A DE 16	Cumpio ib.	MM - 103-	202206
	_				JIBA 10	HEATE	e The	r 1139 1101/	180 a 1919 a
l			fied Parai		7	N ONE HALE	N		www.conten
Actual	A	Temp	Cond	DO	Turbidity	ORP	DTW	Pumping Rate	
Time	рΗ	(°C)	(mS/cm)	(mg/L)	(NTU)	(mV)	(ft)	(mL/min)	Comments
14:33	6.44	18.80	A 20.0	2.25	7)60.7	~64	1.01		
14:36	6.46		0.280	2.54	34.5	-(9)		2<0	192 NI AV
14:39	Co,43	10.12	6.279	2.81	31,7	-63	101	0.50	meson in Contractor
14:42	10.42		0.281	Bollo	20.8	- <u>Cg</u>	1.01		
14:45	6.43	15.76	0.280	3.31	22.4	-72	1.01		DATE OF THE
14:48	1.40	15.58		2 2 1/2	37.9	-75	1.01	202 HOE	1000 01 990
14:51	6.39	15.49	0.280	3.43	243	-75	1.01	- N	
14:54	le .39		0.281	3.81	20.60	-77	1.01		
14:54	6.39		0.280	3.67	17.4	-78	1.01	W//	that Extract less
15:00	6.35			3.93	13.3	- 1729	1.01	V/	
15:03	Ce 35		1.281	372	12.1	- 80	1.01	The San W	:V
15:06					202206		Technic 11	a se feetalesen	NATIONAL ACCEPTANCE
-		18-M	9,1,222	I Higher to	w@leday.	,	371. 142	100 2 10	Gest manner
			enthin a	7 LL	m the	regard of	797, 14	6	A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-
									Parker Section Colleges
			10.00	V0000				• 5	
			- "	6	m= i1	= 0455-04	64	- ·	u 5 to 22
						1			
	100 USV	in Jun		į		1	Service Control	St. Company	a was and to Add
	http://ellf	and the part		27/2		/	OTT - 201	18.0	
		Ппо	1111		E/	11 U. 1		5 II	AND THE PROPERTY OF
					06		P	19	our Souther surface
		- Discoult	_ n H	thos G			- E	1= 27	E., 20 1977
			(+)	flat.	EIII nr 35	->		TK.	- Par 2 97
							X	Ì	
			U						- n - L - 21
							16	111	· ENDE
		- 85	IL -	і ж В	8 EAR	2001-24-		- and Sarin	19,11
		D	37	(8)	11		-		
20.80	-	* T. e. Z.	. 15	36	<u> }</u>		_0,000	4.5	_
									85.25
Certified S	Sample In	formation	•				1	/ /	77
	f Sample:					Analyst	Signature:		
Instrumen						- """		me	- Duca
		rer/Model:	Horiba	-1152					
·	Manufacturer/Model: Hon'be - US2 Serial No. Unit: 100071 KV							TAHR 341	MO
Ca	Calibration Date/Time: 66/14/2022							<u> </u>	

Are low-flow parameters subject to field lab certification?

Yes

No (not required for CERCLA sites or sites outside of NJ)

If yes, low-flow data must be accompanied by a completed "Field Calibration Record, Horiba U-52" form or equivalent.

 $\lab{Field_Data_Sheets} \lab{Excel_Files} \lab{Low_Flow_Well_Info_Sheet_Revision_2-1_102014.x} \\$

LOW-FLOW GROUNDWATER SAMPLING FIELD DATA

Upper Saddle River, NJ Office

Well Number: ルルー /めs

Sample I.D.: NW-108-2022614(if different from well no.)

9	Project: Patchaque MGP Date: 6/14/2 Time: 14:33
	Personnel: AFV/SFJ Weather: Santy Air Temp.: 78
	WELL DATA: Casing Diameter: Stainless Steel Steel PVC Teflon® Other: Intake Diameter: Stainless Steel Galv. Steel PVC Teflon® Open rock DEPTH TO: Static Water Level: Top of Well Casing Other: DATUM: Top of Protective Casing Top of Well Casing Other: CONDITION: Is Well clearly labeled? Yes No Is well clean to bottom? Yes No Is Prot. Casing/Surface Mount in Good Cond.? (not bent or corroded) Yes No Does Weep Hole adequately drain well head? Yes No Is Concrete Pad Intact? (not cracked or frost heaved) Yes No Is Padlock Functional? Yes No No Is Inner Casing Properly Capped and Vented? Yes No
	VOLUME OF WATER: Standing in well: To be purged: PURGE DATA:
	METHOD: □ Bailer, Size: □ Deladder Pump □ 2" Submersible Pump □ 4" Submersible Pump □ Centrifugal Pump □ Peristaltic Pump □ Inertial Lift Pump □ Other:
	MATERIALS: Pump/Bailer:
	SAMPLING DATA: METHOD: Bailer, Size: Syringe Sampler Peristaltic Pump Inertial Lift Pump Other:
	MATERIALS: Pump/Bailer: Teflon® Stainless Steel Tubing/Rope: Teflon® Polyethylene
	SAMPLING EQUIPMENT: Dedicated Prepared Off-Site Field Cleaned Metals samples field filtered? No Method:
	APPEARANCE: Clear Turbid Color: Contains Immiscible Liquid FIELD DETERMINATIONS: See attached form for field parameter data.
	DUP: dv No
	I certify that this sample was collected and handled in accordance with applicable regulatory and project protocols.
	Signature:

2 Park Way, Upper Saddle River, NJ 07458 Phone: (201) 574-4700 Fax: (201) 236-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

18:29 (5 17.70 0.641 4.58 122 -68 4.46 250 18:32 (4 16.85 0.642 6.35 6.4 -83 4.46 1 18:35 (4 16.31 0.641 7.58 54.2 -101 4.46 1 28:35 (4 16.31 0.641 7.93 41.9 -106 4.46 1 28:41 (0.67 16.36 0.643 8.40 29.6 -109 4.46 1 28:41 (0.67 16.36 0.643 8.40 20.9 -109 4.46 1 28:41 (0.67 16.36 0.643 8.40 19.3 -117 4.46 1 28:50 (0.64 15.91 0.644 9.20 19.3 -117 4.46 1 28:50 (0.64 15.92 0.643 9.96 12.5 -121 4.46 1 28:56 (0.64 15.86 0.640 8.90 10.9 -123 4.5 1 29:56 (0.64 15.86 0.640 8.90 10.9 -123 4.5 1 29:13 (0.64 15.86 0.640 8.90 10.9 -123 4.5 1 29:13 (0.64 15.86 0.640 8.90 10.9 -123 4.5 1 29:13 (0.64 15.86 0.640 8.90 10.9 -123 4.5 1	Project Name: Pakhogue MGP Client: BC Personnel: AFV/SFT Purge/Sample Depth: ~9							Project Number:		
Actual Time pH (°C) (ms/cm) (mg/L) (NTU) (MV) (ft) Pumping Rate (mL/min) (ms/cm) (mg/L) (NTU) (mV) (ft) Pumping Rate (mL/min) (ms/cm) (mg/L) (NTU) (mV) (ft) Pumping Rate (mL/min) (ms/cm) (ms			20000			- 494	III. II.	y v	but Tables A	117 %
Time pH (°C) (mS/cm) (mg/L) (NTU) (mV) (ft) (mL/min) Comm 8:29 (65 17.70 0.641 4.78 122 -68 4.46 256 8:32 (64 16.85 0.642 6.38 6.44 -83 4.46 256 8:35 (94 16.31 0.44 7.58 54.2 -101 4.46 18.35 6.49 19.30 41.9 -106 4.46 18.35 6.49 19.30 -117 4.46 19.30 19	<					1990		M =	THE PERSON NAMED OF THE PERSON NAMED IN	10 5 × 10 00
8:22 C.9 (6.85 O.C.42 6.35 8C.4 - 83 4.46 8:35 C. 69 (6.31 O.C.42 7.58 54.2 -101 4.46 8:35 C. 69 (6.31 O.C.42 7.58 54.2 -101 4.46 28:36 C. 68 (6.16 6.47 7.93 41.9 -106 4.46 28:41 (6.67 16.66 15.90 0.C.43 8.40 29.6 -109 4.46 28:44 (6.66 15.90 0.C.43 8.40 20.9 -115 4.46 28:44 (6.66 15.90 0.C.43 8.90 19.3 -117 4.46 28:50 C. 64 15.91 0.C.44 9.22 14.9 -119 4.40 28:51 C. 64 15.98 0.C.42 8.96 10.9 -123 4.46 28:52 C. 64 15.90 0.40 8.90 10.9 -123 4.46 28:53 C. 64 15.90 0.40 8.90 10.9 -123 4.50 29:53 C. 64 15.90 0.40 8.90 10.9 -123 4.50 29:53 C. 64 15.90 0.40 8.90 10.9 -123 4.50 29:53 C. 64 15.90 0.40 8.90 10.9 -123 4.50 29:54 C. 64 15.90 0.40 8.90 10.9 -123 4.50		pН	A STATE OF THE PARTY OF THE PAR	A 160 C 100 C 170	100 miles - 100 miles			THE RESERVE TO SERVE A		Comments
8:23 C 69 16.87 0.442 6.38 86.4 -83 4.46 8:35 6.69 16.31 0.643 7-58 54.2 -101 4.46 8:35 6.69 16.30 0.643 8.40 29.6 -109 4.46 8:31 6.67 16.86 0.643 8.40 29.6 -109 4.46 38:41 6.67 16.86 0.643 8.40 29.6 -109 4.46 38:41 6.65 5.92 0.643 8.90 19.3 -117 4.46 38:56 6.64 15.91 0.643 9.26 12.5 -121 4.46 38:56 6.64 15.86 0.643 8.96 10.9 -122 4.46 38:56 6.64 15.86 0.643 8.96 10.9 -122 4.46 39:56 6.64 15.86 0.640 8.99 10.9 -123 4.50 39:58 6.64 15.86 0.640 8.99 10.9 -123 4.50 39:58 6.64 15.86 0.640 8.99 10.9 -123 4.50	8:29	6,65	17.70	0.641		122	-68	4.46	250	
8:35 6 69 (16.31 0.641 7.58 54.2 -101 4.46 18:38 6 68 (16.16 6.41) 7.93 41.9 -106 4.46 18:38 6 66 6.643 8.40 29.6 -109 4.46 18:41 6.65 15.92 0.643 8.90 29.3 -117 4.46 18:50 6 64 15.91 0.643 9.91 19.3 -117 4.46 18:50 6 64 15.91 0.643 9.96 12.5 -121 4.46 18:50 6 64 15.80 0.643 8.96 10.9 -125 4.50 19:13 6 64 15.80 0.640 8.90 10.9 -125 4.50 19:13 Conterp 11 -75 2622 0615	5:32	_		01642	1.35	84.4		4.46	ecent in animi	ii.
18:38 (. 68 (6 16 0 64) 7.93 41.9 -106 4.46 18:41 (6 67 16 66 0 64) 8.70 29.6 -109 et 46 18:41 (6 65 15 90 64) 8.70 20.9 -115 4.46 18:50 (6 64) 15.91 (6 64) 9.02 14.9 -117 4.46 18:50 (6 64) 15.91 (6 64) 9.02 14.9 -117 4.46 18:51 (6 64) 15.92 (6 64) 9.02 12.5 -121 4.46 18:52 (6 64) 15.92 (6 64) 8.96 16 9 -125 4.46 18:53 (6 64) 15.92 (6 64) 8.96 16 9 -125 4.52 19:13 (6 64) 15.92 (6 64) 8.90 16 9 -125 4.52 19:13 (6 64) 15.92 (6 64) 8.90 16 9 -125 4.52							-101	4.46	=436	Y Right far a
18:41 (0.67) 16.86 (0.643) 8:40 29.6 -109 4 46 18:44 (0.66) 15.98 (0.643) 8:70 20.9 -118 4 46 18:44 (0.66) 15.92 (0.643) 8:70 20.9 -118 4 46 18:50 (0.64) 15.92 (0.643) 8:91 19.3 -117 4 44 18:50 (0.64) 15.92 (0.643) 8:96 10.9 -118 4 46 18:51 (0.3) 15.92 (0.642) 8:96 10.9 -128 4 46 18:52 (0.64) 15.96 (0.642) 8:99 9 9 -125 4 52 19:13 (0.645) (0.645) 8:99 9 9 -125 4 52			16.16							nice-
28:44 (0.66 15.96 0.643 8:70 20.9 -115 4.46 28:47 (0.65 15.92 0.643 0.91 19.3 -117 4.46 28:50 (0.641 15.91 0.644 9.92 14.9 -119 4.46 28:50 (0.641 15.98 0.643 8.96 12.5 -121 4.46 28:51 (0.31 15.98 0.643 8.96 12.5 -121 4.46 28:51 (0.641 15.96 0.640 8.99 9.9 -125 4.52 29:03 (0.641 15.96 0.640 8.99 9.9 -125 4.52		10.67	16.06				7			TATAL BLOKE
28: 47 6 65 15.92 0.643 9.91 19.3 -117 4.46 18: 50 6.64 15.91 0.641 9.02 14.9 -118 4.06 18: 50 6.64 15.92 0.643 9.96 12.5 -121 4.46 18: 51 6.64 15.92 0.643 9.96 12.5 -121 4.46 18: 52 6.64 15.92 0.643 9.96 12.5 -121 4.46 18: 52 6.64 15.92 0.643 9.96 12.5 -121 4.46 18: 52 6.64 15.92 0.643 9.96 12.5 -123 4.62 19: 13 6.64 15.92 0.640 8.99 9.99 9.99 12.5		Ca Cala	10 10 7 10 10 10 10 10		8.70					DOM VERSE
18:50 6.64 15:91 0.644 9.02 14.9 -119 4.06 18:50 6.64 15:91 0.643 9.26 12.5 -121 4.46 18:50 6.64 15:80 0.643 8.96 10.9 -123 4.46 18:50 6.64 15:80 0.640 8.99 9.99 9.99 9.99 9.99 9.99 9.99 9.9		10 45		11 Po					24 T	
18:63 C. CH 15:80 O. CH3 8:90 10:9 -125 4:40 18:64 C. CH 15:80 O. CH0 8:99 9 9 9 -125 4:52 19:13 Cou Ect pw-175-2022 00:5								u de.	9=	Sec. 1
15. 15. 15. 25. 0. 412 8. 94. 10. 9 - 12.3 4. 4. 4. 25. 15. 26. 0. 440 8. 99. 99. 99. 125 4. 52. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19									\$2 m. Wa	
9:13 Cou = 1 SBC O : CHO & 99 9 9 125 5 5 5 5 5 5 5 5 5									1	
19:13 Conser pw-73-2022 0615							-77		1122	
							30	1198035	Alexandra CV	L. Gersterins
		Coll	ECT /V	W-42	- مان دام	00/2	25 Nov. 17, W.	391. 8.	I I II	
	_		- 17.00	or the Children	T 150	J. 1813 12 12 14	60 T	- Herito	E.9 17	0%
				H. Herodout, Little	\$2 11(0)		- 3-07/ 5	11/116	1000	3/1 = = 3/
									- A	A. P
		- 34			2008 NO.	9/	25 Blat (A 000 NO.	11 (7)	
					>	-	1951,000	G WEB	20- DE 1710	
		Morn	V	WELLOOD	2		ļ	PERMIT	No in miles	iddi daydha D
		helyma e	Mr.	10			2	1442	med .	
			9/19	en la	13/1	A STATE OF THE PARTY OF THE PAR	=VI I	200	Q 112	Hill 2
		_		_		\sim	6	1)	76 · · · ·	- 186 0/106
			Exec	11-1	R		1	D/	11-12	-15 View 116
						251100020		*>>	63 // // / / / / / / / / / / / / / / / /	m (15)31 - 6-10 1
								- T		
	15]	70		1/40
				Ü.					40	100
				344	97			u liilidu		- III IAN
			. 916							4.
		27	200	191	\$100 m	f65	7		59 (C) Og III. (
								 		

Are low-flow parameters subject to field lab certification?

Yes No (not required for CERCLA sites or sites outside of NJ) If yes, low-flow data must be accompanied by a completed "Field Calibration Record, Horiba U-52" form or equivalent.

Serial No. Unit: UOPOTHKU

Manufacturer/Model: Horiba

Calibration Date/Time:

Serial No. Handheld: JAHR34 MO

LOW-FLOW GROUNDWATER SAMPLING FIELD DATA

Well Number: MW - 75 Sample I.D.

Opper Saddle River, NJ Office	Sample 1.D.:
Project: Patchogue Personnel: AFV (SF)	Date: 6/15/22 Time: 08:29 Weather: Sungy Air Temp.: 7/F
DEPTH TO: Static Water Level: 435 ft Bottom of WDATUM: Top of Protective Casing Top of Well Casing CONDITION: Is Well clearly labeled? Yes No Is well s Prot. Casing/Surface Mount in Good Cond.? Does Weep Hole adequately drain well head? Is Concrete Pad Intact? (not cracked or frost her Is Padlock Functional? Yes No No NA Is Inner Casing Properly Capped and Vented?)	ell
PURGE DATA: METHOD: □ Bailer, Size: □ Centrifugal Pump □ Peristaltic Pur	☐ 2" Submersible Pump ☐ 4" Submersible Pump mp ☐ Inertial Lift Pump ☐ Other:
Was well Evacuated? 🖸 Yes 💢 No N	Tubing/Rope: Polyethylene Polypropylene Other: Volume Pumped: Seelless umber of Well Volumes Removed:
PURGING EQUIPMENT: Dedicated Prepared Off	-Site Field Cleaned
SAMPLING DATA: METHOD: Bailer, Size: Syringe Sampler Peristaltic Pump Inelegation	Submersible Pump
MATERIALS: Pump Bailer: Teflon® Stainless Steel SAMPLING EQUIPMENT: Dedicated Prepared Metals samples field filtered? Yes No Metho	Tubing/Rope: Teflon® Polyethylene Off-Site Field Cleaned d:
APPEARANCE: Clear D Turbid D Color:	☐ Contains Immiscible Liquid
FIELD DETERMINATIONS: See attached form for field parameters	meter data.
DUP: No Yes Name:	
I certify that this sample was adjected and handled in accordance with applicable r	egulatory and project protocols.
Signature:	Date: 00/5/22

2 Park Way, Upper Saddle River, NJ 07458 Phone: (201) 574-4700 Fax: (201) 236-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

	Dr. Shire No. Dr. Ugg Heren	100-01
Project Name:	Ketchageno MGP	Project Number: / 3 30 & /
Client:	BC)	Date: C/15/2072
Personnel:	AFVKFT	Well ID: MW - 145
Purge/Sample Depth:	~9.5	Sample ID: NW-145 - 20220615
Fulge/Sample Deptil.	harten mark the following the last set	Sample in. IMP - 177 - 1955(1)

		Cert	ified Parar	neters	The same	- 1	2.2	April 1985 His His	JULY TO THE
Actual		Temp	Cond	DO	Turbidity	ORP	DTW	Pumping Rate	
Time	pН	(°C)	(mS/cm)	(mg/L)	(NTU)	(mV)	(ft)	(mL/min)	Comments
79:28	6.63	20,52	0.561	1.001	27.2	20	1.01	275	W .
09:21	6.45	19.75	0.566	0.95	20.6	25	1.01	140 141 00	iii
09:34	6.41	19.60	0.5660	0.81	18.1	25	1.01		Paris and the second
09:37	6.39	19.46	0.564	0.76	11.4	28	1.01		7-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
U9:40	6.38	19.41	0.502	0.65	8.2	30	101		力を必要的
09:43	4.39	19.31	0.560	000	62	.34	1.01	9461	KI Die Tilke.
09:46	6 38	19.23	0 559	0.57	4.0	35	1.01	2	
09:49	6.39	19.17	0.558	0.51		*37	1.02	04E E1	· · · · · · · · · · · · · · · · · · ·
09:52	6.36	19.14	0.557	0.48	4.3	38°°	1.02	W. casellastes	or Charles A or
09:55	6.36	19.10	0.555	6.48	3.4	38	1.02	32 1 -	
09:58	6-35	19.00	0.554	0.45	3.2	40	.02	1	
10:01	2	CLIFC	- M	121-1	45 - 20	22061	4 日 第 日	ACL SIN	
		_ \$2.50	arresinter	WHEN O	Bullans 2		177.34	\$ ** L	THE THE PARTY
		. W	and the same	17	製造・ドイイ	7 P. 10	156.67	1911- 1 "WE	三十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二
								0.00	25000172
	O 36	î	1165-			0900	Dage 1		111 441
	100		1172		065 -00	66 3555 E	ANGERCO .	Tildapay w	
UL.			7	\rightarrow	P		X1 5		
	6 H		9719		5_	32	/	L speed?	make makeni filma a
	-	67		10	1/2	一一川本全村中		79-12	
		■ 00,	e al	3		215		10 100	min at min terminal
		9/2		_	0176		EDV- T	110	CALL MAN SE PERSONA
34		61 T MID	4671	VIII 7	4	1	-	1000	TO VALUE OF THE PARTY OF THE PA
				11169	Hitm/	a linear		2	DE LA TOUR AND
. –									, ,
		11	10 =71.4	TT I	THE THE	e Tiesti	(7) 1236		I LE LEWIS G
		- 5	Y			73			
	4		W(4=7)	58 m	100	nt relig	-3-	\$1100 P	
					14			= 153	
300		7 1103	E &	N=	1965	_ 9 6	W CONTR		
11						24			

	(1)	Washington, and	-	a =	nst u=1,		- 4100 F	
300	N 1104	E 5	W=	1966	= 2 0	N SATA	100	
Time of Sa Instrument Da Manu Calibra Are low-flow para	nta: ufacturer/Model: Serial No. Unit: ation Date/Time:	Horif Uppor Le/15	LICATION) } ? □ Yes \ No	Serial No.	Handheld:		outside of NJ)
lf yes, low-flow d	ata must be accor	npanied by a	complete	ed "Field Calib	ration Record	, Horiba U-	52" form or equiv	ralent.

LOW-FLOW GROUNDWATER SAMPLING FIELD DATA

Well Number: MW - 145

Upper Saddle River, NJ Office

Sample I.D.:

Project: Fathbages MGP Date: 6/15/22 Time: 09:28 Weather: 5uns Air Temp.: 73°F
WELL DATA: Casing Diameter: Stainless Steel Steel PVC Teflon® Other: Intake Diameter: Stainless Steel Galv. Steel PVC Teflon® Open rock DEPTH TO: Static Water Level: Stainless Steel Galv. Steel PVC Teflon® Open rock DEPTH TO: Static Water Level: Top of Well Casing Other: CONDITION: Is Well clearly labeled? Yes No Is well clean to bottom? Yes No Is Prot. Casing/Surface Mount in Good Cond.? (not bent or corroded) Yes No Does Weep Hole adequately drain well head? Yes No Is Concrete Pad Intact? (not cracked or frost heaved) Yes No Is Padlock Functional? Yes No No Is Inner Casing Properly Capped and Vented? Yes No VOLUME OF WATER: Standing in well: To be purged:
PURGE DATA: METHOD: Bailer, Size: Bladder Pump 2" Submersible Pump 4" Submersible Pump Inertial Lift Pump Other: MATERIALS: Pump/Bailer: Stainless Steel PVC Other: Pumping Rate: Pumping Rate: Yes No Number of Well Volumes Removed: PURGING EQUIPMENT: Dedicated Prepared Off-Site Field Cleaned
METHOD: Bailer, Size: Bladder Pump 2" Submersible Pump 4" Submersible Pump Syringe Sampler Peristaltic Pump Inertial Lift Pump Qther: MATERIALS: Pump/Bailer: Teflon® Tubing/Rope: Polyethylene SAMPLING EQUIPMENT: Dedicated Prepared Off-Site Field Cleaned Metals samples field filtered? Yes No Method: APPEARANCE: Clear Turbid Color: Contains Immiscible Liquid FIELD DETERMINATIONS: See attached form for field parameter data. DUP: No Yes Name: MW 145 DDD 0615 (SNS/MSD) I certify that this sample was collected and handled in accordance with applicable regulatory and project protocols. Signature: Date: D

2 Park Way, Upper Saddle River, NJ 07458 Phone: (201) 574-4700 Fax: (201) 236-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

Project Name:	Patchoque MGP	Project Number: 153021
Client:	BC	Date: 6 /15/2022
Personnel:	AFV /SFJ	Well ID: MUY-155
Purge/Sample Depth:	1~10.5'	Sample ID: MIJ - 125 - 20220615

		Cert	ified Paraı	neters	±	- 181 1149	C (A	St. Stranger	- 11
Actual Time	рН	Temp (°C)	Cond (mS/cm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)	DTW (ft)	Pumping Rate (mL/min)	Comments
10:53	6-128	20.52	0.320	2.70	644	133	1.43	225	
10156	Co.50	18.48	0.329	3.19	41.5	131	143	SPEEL A LOCAL TO SHEET OF	91
10:59	6.49	17.72		3.34	24.7	/23	1.43	-10 + %	6 A 4 1 KH 100 P
11:02	6.47	17.75		3.60	23.0	114	1.43	i	
11:05	Co.48	17.77		4.98	16.8	106	1.43		JUNE DATE
11:08	6.48	18.25	0.340	9.43	16.7	92	1.43	-m (ca(0):21)	a (450,503)
11:11	6.48	18.08	0.343	8.55	13.6	84	1.43	11114	
11:14	6.46	10.64	0.343	4.29	13.0	78	1.44	J. F	
11:17	6.48	18.14	0.343	9.42	13.4	69	1.44	managho	in the calotte shall
11:20	Co.47	17.99	0.345	7.29	12.0	66	1.44	L	
11:23	6.48	17.92	0.345	8.87	11.3	Cal	1.44	12	931
11:26	01	SLIE	7 1976	MW-	125 -	20220	615		- 1 M
¥		THE STATE OF THE S	1875 GG (P) ₂₇	-Villeriv Va	中 1000		Shirt stage	e Wich	STREET, STREET STAY
		The state of the	(1) 日本	7 - 1	allo William	di L	7.2	POLIT AND MAKE	A THE PARTY OF THE
		2.5			>			10	SSOCIAL DESIGNATION
								lu	
			1117	in some	-			Tell angelos in	1
		<	1						
	Trept.	11	0	\sim				E nom-to	DELLE STATE
	nosty#	1.0		-	$\geq \sim$	101	STEWARS:	£:	
		7 3	Walter Care						30,000
								00000	(12) 中国(1)
			1/1/1/19		U.	1111			The state of the s
				211/01	16a 76a			SMOIT SMOIT	79P
							10	6.47	138
			-en /1 /	=	, in	lare-term	Hostile III	#	Tompton of the later
							1	1	
		-151	3 = 1					Property and the	\$ 180
	1								7

Certified Sample Informa Time of Sample:	ation:	Analyst :	Signature:	Snowla	Jonas
	odel: Haribu U-5: Unit: UOPOFIKV	2		TA+1 R3	Δ.
Calibration Date/T	ime: (0/15/22		_	1	

Are low-flow parameters subject to field lab certification?

Yes No (not required for CERCLA sites or sites outside of NJ) If yes, low-flow data must be accompanied by a completed "Field Calibration Record, Horiba U-52" form or equivalent.

LOW-FLOW GROUNDWATER SAMPLING FIELD DATA

Well Number: MW-125

Upper Saddle River, NJ Office	Sample I.D.: MW-127 - 2022 CLIS
Project: Patchogue MGP Personnel: AFV/SFJ	Date: 6/15/22 Time: 10:53 Weather: Suncy/Light Cond Air Temp.: 75°F
WELL DATA: Casing Diameter: Intake Diameter: DEPTH TO: Static Water Level: DATUM: Top of Protective Casing Top of Well Casing CONDITION: Is Well clearly labeled? Is Prot. Casing/Surface Mount in Good Cond.? (Does Weep Hole adequately drain well head? Is Concrete Pad Intact? (not cracked or frost head is Padlock Functional? Yes No NA Is Inner Casing Properly Capped and Vented? VOLUME OF WATER: Standing in well:	el PVC Teflon® Open rock ell:ft Other: ell clean to bottom? Yes No not bent or corroded) Yes No Yes No aved) Yes No Is Inner Casing Intact? Yes No
PURGE DATA: METHOD: Bailer, Size: Bladder Pump Centrifugal Pump Peristaltic Pur	☐ 2" Submersible Pump ☐ 4" Submersible Pump, mp ☐ Inertial Lift Pump ☐ Other:
MATERIALS: Pump/Bailer: Teflon® Stainless Steel PVC Other: Pumping Rate: 225m/ Pumping Rate: Elapsed Time: Third	Tubing Rope: Polyethylene Polypropylene Other: Volume Pumped: 2 25 gc. Usas
SAMPLING DATA: METHOD: Bailer, Size: Syringe Sampler Peristaltic Pump Iner	
MATERIALS: Pump Bailer: Teflon® Stainless Steel SAMPLING EQUIPMENT: Dedicated Prepared 6 Metals samples field filtered? Prepared 6	d:
APPEARANCE: Clear Turbid Color: FIELD DETERMINATIONS: See attached form for field parar	
DUP: 27 No	
I certify that this sample was collected and handled in accordance with applicable re	10/10/10
Signature:	Date: 9/6/20

2 Park Way, Upper Saddle River, NJ 07458 Phone: (201) 574-4700 Fax: (201) 238-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

Project Name:	Patchoque A	MGP Pr	roject Number:	15302
Client:	BC		Date:	6/15/22
Personnel:	AFV/SFJ		Well ID:	MW- 120
Purge/Sample Depth:	~21'	(A) _ (A) _ (A)	Sample ID:	MU-12D-202206/5
		- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	I ac.	Charles a special or a series of the series

Actual Time									
	рН	Temp (°C)	Cond (mS/cm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)	DTW (ft)	Pumping Rate (mL/min)	Comments
11:33	5.52	17.22		1.20	9.4	126	1.32	200	
1:36	5.07	6.77	0.532	0.52	5.2	157	1.32	STATE AND LODGE	
1:39	5.02	16.67	0.536	0-39	4.11	165	1.32	1-5	The Street
1:42	4.99		0.537	6.35	2.8	170	1.32		
11:45	4.97	6.55	0.537	0.30	1.6	17-3	1.32		- 10 35/2019
11:48	4.94	16.55	6.53		1.0	175	1-34	33 Co.	10
11:51	4.95	4.54	0.534	0.27	0.8	175	1.34		
11:54	4.92	16.50	0.537	0.25	0.5	177	1.35	-	4
11:57	4.92	16.50	0.537	D. 26	0.4	17-8	1-36	K Harrison I	ALS WILLIAMS
12:00	4.91	16.51	0.536	0.24	0.2	179	1.36	1/7	SP
2:03	4.91	16.49	0.536	0.24	0.2	180	1.36	2 1/	
12:06		OLLE	CT A	W - 12	D - 22	020615	- 41	White water	as Well applica
		11	D/158 U.T.	1300-31 3	H72911,49		021	2011	-1
		D.	16-11-02	7 (2	munit.	83 4	ДД °С.	P L. PL.	JK. Jk.
					٠		-	100	2 (5 - M) 11 h
							Compr		
					1	- 1/00		AU SE	
		100		20	21		B/111	7	
	and the	4 3h					101		
	i	1/1	1.18	20- 0	0/>		701_10#	177791	CONTRACTOR OF THE PARTY
			_		1(3)	\times	191	H Kong Pilit I	HILL OF THE PO
		11	18 18	111111		4			19YASAA TURA
						11190	12		solula 15 T
								\times	
									2 15
									7 27
									$\overline{}$
			14 14	-	•		10.00		
		1177 1170	3	1				- A	
		. V. V.	1 6	276		0.0			THOIL

Certified S	ample in	formation	:			•			
Time of	f Sample:		2:06			Analyst \$	Signature:	and.	a Jun
Instrumen	t Data:		11 - 1	11 6 1				-01100	
N			Horiba						
	Seria	I No. Unit:	HOPC	THKI	7	Serial No. I	Handheld:	JAHR	34 MO
Ca	libration D)ate/Time:	Ce/15	12628					

Are low-flow parameters subject to field lab certification?

Yes No (not required for CERCLA sites or sites outside of NJ) If yes, low-flow data must be accompanied by a completed "Field Calibration Record, Horiba U-52" form or equivalent.

LOW-FLOW GROUNDWATER SAMPLING FIELD DATA

Upper Saddle River, NJ Office

Well Number: MW - 12D
Sample I.D.: MW - 12D - 2022 of different from well no.)

Project: Patchogue Personnel: AFV/SE)	Date: 0b//5/28 Time: Weather: 5un y Air Temp.:74°F
DEPTH TO: Static Water Level: 1.32 ft Bottom of DATUM: Top of Protective Casing Top of Well Casin CONDITION: Is Well clearly labeled? Yes No Is Is Prot. Casing/Surface Mount in Good Cond. Does Weep Hole adequately drain well head? Is Concrete Pad Intact? (not cracked or frost h	eel
	☐ 2" Submersible Pump ☐ 4" Submersible Pump ump ☐ Inertial Lift Pump ☐ Other:
MATERIALS: Pump Bailer:	Volume Pumped: 2Callow Number of Well Volumes Removed:
SAMPLING DATA: METHOD: Bailer, Size: Syringe Sampler Peristaltic Pump In	
MATERIALS: Pump/Bailer:	
DUP: X No Yes Name:	
I certify that this sample was collected and handled in accordance with applicable Signature:	e regulatory and project protocols. Date:

2 Park Way, Upper Saddle River, NJ 07458 Phone: (201) 574-4700 Fax: (201) 236-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

Project Name: Chilosop NGP	Project Number: 1530Q1
Client: BC	Date: Ce/15/22
Personnel: AFV SFJ	Well ID: MU-85
Purge/Sample Depth: ~ 6.5	Sample ID: MW - 85 - 20220615

		Cert	ified Parai		r = const	- 5 1 4 4 5 - 4	VI X = FILE	SSORBOT TOTAL	1 29 10 1
Actual Tim e	рН	Temp (°C)	Cond (mS/cm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)	DTW (ft)	Pumping Rate (mL/min)	Comments
3:40	5.96	20.56	0.394	1.12	33.3	119	0.84	300	
13:49	606	18.04	0.463	0.6	51.7	64	0,80	affili beatimens	禁忌
13:52	Ce.10	17.46	0.413	0.58	58.6	43	12.75	VARIOT SI	S 1835/1 000
3:55	(0.12	17.97	0.416	0.61	72.6	29	0.75	100	e feet
3:58	6.12	17.22	0.418	0.62	78.1	21	0.74	.00	10.17AT 1277
4:01	6.13	17.19	0.420	0.68	59.7	(6	0:74	20 F) E	(66.8 %
4:04	6.14	7.04	0.422	0.74	36.7	11	0.74	221106	
4:07	6.12	16.93	0.423	6.9 6	26.1	7	0.75	20万	
14:10	6.13	16.92	0.423	0.93	75.5	11 28	0.75	一些的证明	999 TABLE
14:13	10.13	16.94	0.423	0.92	12.2	2	0.75		
14:16	6.12	16.84	13-423	0.99	9.6	0	0.75	12	
14:19	Cor	ECT	- ניוא	8S ~	702 206	15	書きるのは	140 S-6 11 M	Stor Senting
		SUNNE	AND COMMON	POSINO NO MEDI	HOUSEURA		12	=60	ACCULABLE 1998
		18	/- 257	E Pal	325-45774	Eddan II	0.00	72421 11	manday - Syna
					P			W	violi Not of Ok
		CAMPION AN	20,000	Assertance of	10412737300111 w	-	e World e	~ ~~~ v	n n = =
			1485	the reduction	III. tectrose		Tana C	III Marcalli Sanni Strae	T.
				7-				72 -	-c 1
	124	+ 113	**	11/				T HT 300	109 - 3 MINETEN
	Control and	d c	37	7		DAN	200	-	
5,4		10044	atta resid	1		9110 4		VSEEN.	HUNDALDM MANS
			8			1	S CREAT AND	2:50 10.1	MUSEUM AREAN
		Marilla 135	Sharing I	MRS 49			syspile to	95/4 X 29	1000 MW2000
			3	(pts)	V 2050-	100		67 1/20	THE TO KEN COM
							7	- Date -	. N. 102
: =								2 19 12	14. A. C. Was
			800 n.C	Supran) State	12 AXR 11	ordine spirit.	Seviled 6	lili (il l'libe l'ape	Type Traine II S
	00 (·4 =		Z.	. &	467	A	20g X	
	565 B	11a . SQ	12 7 8		60		185	X3 ST MF	FI - 80000
			0		7.	7. ×	0.00		

			800 n	(56pm) (12 P. S. S. S. FR	II adam sad	S evine d		
	56 8	76 S		× // //	ECI		- 55-	X3 - //	12 1 2 2 2 3
Inetrumor	of Sample:		4:19	iba TIK	U-52			eld: TAHR	1 Jan
Are low-flow	/ parameter	s subject	to field lab c	ertificatio	n?□Yes ❷⊀	o (not requir	ed for CEI	RCLA sites or sites	s outside of NJ)

Upper Saddle River, NJ Office

LOW-FLOW GROUNDWATER SAMPLING FIELD DATA

Well Number: MU - 85
Sample I.D.: MW - 85-2022 00 (If different from well no.)

Date: 6/15/22 Time: /3:40
Weather: Supply Air Temp. 7

		1.000 0- 2020015
	Project: Patchague MGP Personnel: AFI SFT	Date: <u>6/15/22</u> Time: <u>13:46</u> Weather: <u>Sunary</u> Air Temp.! 72 F
	WELL DATA: Casing Diameter: Intake Diameter: Static Water Level: DEPTH TO: Static Water Level: DEPTH TO: Static Water Level: Top of Protective Casing Top of Well Casing CONDITION: Is Well clearly labeled? Is Prot. Casing/Surface Mount in Good Cond.? (In Does Weep Hole adequately drain well head? Is Concrete Pad Intact? (not cracked or frost heaven in Seal of the Seal	☐ PVC ☐ Teflon® ☐ Open rock :ft ☐ Other: clean to bottom? ☐ Yes ☐ No ot bent or corroded) ☐ Yes ☐ No Yes ☐ No ved) ☐ Yes ☐ No Is Inner Casing Intact? ☐ Yes ☐ No Yes ☐ No
	PURGE DATA: METHOD: Bailer, Size: Bladder Pump Contrifugal Pump Peristaltic Pump	Submersible Pump
	MATERIALS: Pump/Bailer: Stainless Steel PVC Other: Pumping Rate: 300 m m Elapsed Time: 30 min Was well Evacuated? Yes No Num PURGING EQUIPMENT: Dedicated Prepared Off-S	Tubing/Rope: Teflon® Polyethylene Polypropylene Other: When the state of the state
	SAMPLING DATA: METHOD: Bailer, Size: Syringe Sampler Peristaltic Pump Inertia	sbmersible Pump □ 4" Submersible Pump al Lift Pump □ Other:
	MATERIALS: Pump/Bailer: Teflon® Stainless Steel SAMPLING EQUIPMENT: Dèdicated Prepared O Metals samples field filtered? Yes No Method: APPEARANCE: Clear Turbid Color: FIELD DETERMINATIONS: See attached form for field parame DUP: Yes Name:	:
Ç.	MS/MSD: D/ No D Yes Name: I certify that this sample was collected and handled in accordance with applicable reg	

2 Park Way, Upper Saddle River, NJ 07458 Phone: (201) 574-4700 Fax: (201) 236-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

Project Name: Patriague MGP	Project Number: 153021
Client: BC	Date: 6/15/22
Personnel: AFV SFT	Well ID: MW - 115
Purge/Sample Depth: ~//	Sample ID: NW-115-20220 15

	= 88	Cert	ified Paraı		CKS- (F) 506	Try to (C)	1 26, 100	W = 0 -74EU	80 6 JUL 24
Actual Time	рН	Temp (°C)	Cond (mS/cm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)	DTW (ft)	Pumping Rate (mL/min)	Comments
4:33	6116	21.24	0.434	1.84	284	7	0.84	175	54.
4:36	6.30	19.94	0.459	1.70	262	-23	6.84	adformer — m	1=
4:39	Ca. 32	90.29	0.464	2.02	1560	-75	0.84		TV 3 - 0 - 2W
4:42	6.33	20.42	0.467	224	138	-40	0.85	U	THE RESIDENCE
4:45	6.33	90.60	0.468	2.42	130	-45	0.85	=	VI TO THE
14:48	Co.35	20.57	0.466	2-100	109	-49	0.85	March 1146 25	E. Den
14:51	Ce.35	10.55	0.466	2.68	95.9	-51	0.832	P366 (5)	
14:54	t. 35	70.58	0.466	2.68	79.1	-54	0.82	8	
14:57	6.36	20.27	0-46	2.71	(8.2	-55%	0.82	12 - X	ngin Page XII
15:00	6.36	19.79	0.466	2.58	46.5	-57	0.82	100	No.
5:03	Ca. 36	19.58	5.468	2.66	39.0	558	0.82	□ 4	.00
15:06	COL	LECT	Mrs -	-115 -	26720	015	E Isfair	10 posts	CIL PAYING VALUES
1		_ Showing	Mr. mann	A REPORTE	0.018		70 YF 60	200 N 1	9915:32 - 57
		100	-co(f) Min	45.54	SARAME IN	and the same	750/62	[1981] [12] #85	With a mark to the control
						-		~ 8	Address of the
				- E		- 00	W		1913
	_			2011/06/2	11 CONS		1 7 - 22	imma FOC	
	15,754						818.7	TI ELECTRINA	S - 10 (200 (200)
	Minute Marin	42 256	9092		-	1 150112	Pair and		ni stante
		District I	65330 FB	131 116		TVGE (FF)	I decide	1)	5K 1631 HILL 1933
					1100	1	1 10 A 12	X381 W	750 PER 1772 COLUM
		Taxof aid:	Siffing Sill	Kansa - Isa		30.00		(0)(0) 35:	RAND AND ESTABLE
	- 15		755	. 86	11/4 94	SEE OF THE		400 ji	OFFICE TO STATE
								X	
									APP II STANISH
			1941 00	53 luk+800	States - 64 3	562399600	30 bisec 1 jpasiti	\$20% // \$250 F8	0,8200
		2 88							
		140	Sh P N.	80 SE	tej i /	=3-97	24 61	C= 161 52	TASSE TARREST
						22		7 1	1

-	-	277-1	E	99.17	2	DECEMBER OF A	- 120 to	V - V - 2* 226562000
Certified Sample In Time of Sample:		: : O(o			Analyst	Signature:	mla	Jana
Instrument Data: Manufactu	rer/Model:	florib	~U- 2	52			JAHR31	,
Calibration I	Date/Time:	06/15	/2022	2_	— Geriai 140. 7	riandileid.	UNITES	1140

Are low-flow parameters subject to field lab certification?

Yes No (not required for CERCLA sites or sites outside of NJ) If yes, low-flow data must be accompanied by a completed "Field Calibration Record, Horiba U-52" form or equivalent.

Upper Saddle River, NJ Office

LOW-FLOW GROUNDWATER SAMPLING FIELD DATA

Well Number: MW - 115 Sample I.D.; nw 115 - 20220615

	Date: <u>86/15/22</u> Time: <u>14:33</u> Weather: <u>Searce</u> Air Temp.: 7-2
	74 Tomp.: 15
WELL DATA: Casing Diameter: Intake Diameter: DEPTH TO: Static Water Level: DATUM: Top of Protective Casing Top of Well Casing CONDITION: Is Well clearly labeled? Is Prot. Casing/Surface Mount in Good Cond.? (no Does Weep Hole adequately drain well head? Is Concrete Pad Intact? (not cracked or frost heavy Is Padlock Functional? Yes No MA	☐ PVC ☐ Teflon® ☐ Open rock :ft ☐ Other: clean to bottom? ☐ Yes ☐ No ot bent or corroded) ☐ Yes ☐ No Yes ☐ No ed) ☐ Yes ☐ No Is Inner Casing Intact? ☐ Yes ☐ No
Is Inner Casing Properly Capped and Vented?	
	2" Submersible Pump
MATERIALS: Pump/Beiler:	Tubing/Rope:
Pumping Rate: 175 ml/min Elapsed Time: 30m 4	Volume Pumped: 1.75 gallennament of Well Volumes Removed:
SAMPLING DATA: METHOD: Bailer, Size: Syringe Sampler Peristaltic Pump Inertia	
MATERIALS: Pump/Bailer: Teflon® Stainless Steel	Tubing/Rope: Teflon® Polyethylene
SAMPLING EQUIPMENT: Dedicated Departed Of Metals samples field filtered? Dedicated No Method:	, ,
APPEARANCE: Clear Turbid Color: FIELD DETERMINATIONS: See attached form for field parame	
DUP: No Yes Name:	
I certify that this sample was collected and handled in accordance with applicable regu	ulatory and project protocols.
Signature: Sun less Sun	Date: 9/5/22

2 Park Way, Upper Saddle River, NJ 07458 Phone: (201) 574-4700 Fax: (201) 236-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

Project Name: Pablingue ALGP	Project Number: 15302
Client: BC	Date: 6/16/2022
Personnel: AFV KFT	Well ID: MH-45
Purge/Sample Depth: ~10'	Sample ID: NW - 45 - 2022 06 (6
1997 1996 the 9101000 as 27 M annual	1942年 - 中国 20月月1日

	1	Cont	ified Days		Walley III Con-		426	0 5(0)(2)	N 12 2
A -4: -4			ified Para		T 1. 1. 124	000	0711	special or popular	
Actual		Temp	Cond	DO	Turbidity	ORP	DTW	Pumping Rate	_
Time	pН	(°C)	(mS/cm)	(mg/L)	(NTU)	(mV)	(ft)	(mL/min)	Comments
7:36	6.76	1701	0.534	1.93	522	-5	4.88	300	
54:39	0.90	14.97	12.543	2.48	247	-96	4.49	reside living (I). Fine	
77:42	Cs. 96	1462	0.543	3.11	162	-108	4.96	w= 25 = m	atting to the
07:45	Ce.97	14.50	0.543	3.47	135	-114	4.92	-	
57:4B	6.46	14.41	0.543	3.79	94.6	-120	4.92		7 40 30311
77:51	6.95	14.36	0.542	4.11	61.0	-125	4.92	THE THE	: chile e a
7:54	6.94	14.32	0 542	4.33	57.6	-126	4.95	N. 10 -1-22	
57:57	6.95	14.28	0.542	4.55	40.7	-130	4.92	The gr	
08:00	1.93	14.24	13.540	14.71	29.6	-132	4.92	dy one Dip	18 18 18 18 18 18 18 18 18 18 18 18 18 1
18:03	6.93	14.22	0.591	4.79	28.2	-132	4.92	(See	
38:06	6.92	14.22	0.541	501	19.5	-134	4.92	- V	
38:09	Cou	ECT	Mes 4	5-202	20016	The state	11 11 11 15 15	· I die	The state of the s
6		T pennu	SPI SPILLING	A 70-300 -0.1	50) / UVI		ON P	med 50	30000 CHUIS
		b	ingal July	1 4	のできる	regional L	1,1071240	rati al Pis	Now The second states
								A.	- tale -
		145	Caroling at the	- 17 ath		-17	0 - 0 529-	14	
			3500	5700 T 1	The section	e constant	10 to	and the same of	_
			1	-	1.4	1		and the same	
	- Walt	Frankli	-	\mathcal{O}			Mary Halley	1940	11.24
	105,00	a m			3			Fe:	
		Lighter			7		D25/27 1/7E	Li niffai	3-27
					2	01 0	C SET C	(3)	1971 - 1127-14 1771
		and alch	बाना(तो ह्या)	17552 10	Tal arest			list	13/6/41
				14-7	at la d	Market I		ignation and a	-10 tops 10
							511	10.1	MATE IN
			771 381	Non los	1977 1-1201	guernthick of	e way or M	5)	
		Vine-		17.0					
1.5		- 3.2	No. 120	TOUR I	T *		SE 5.	453	3002 300
	1								

					<u> </u>				
Certified Samp Time of Sa			:09			Analyst	Signature:	51	2 Zu
Instrument Da	ata:						•	0	
				all-52					
	Serial I	No. Unit:	WOPE	71KU		Serial No. I	Handheld:	JAHR3	4 MC
		te/Time:	ce/10	1702	2_	-	-		

Are low-flow parameters subject to field lab certification?

Yes

No (not required for CERCLA sites or sites outside of NJ) If yes, low-flow data must be accompanied by a completed "Field Calibration Record, Horiba U-52" form or equivalent.

Upper Saddle River, NJ Office

LOW-FLOW GROUNDWATER SAMPLING FIELD DATA

Well Number: MW - 45

Sample I.D.: 45-20720d6 (if different from well no.)

Personnel: AFV/SFT Date: 6/16/22 Time: 07:86 Weather: Quercest Air Temp.: 66
WELL DATA: Casing Diameter:
PURGE DATA: METHOD: Bailer, Size: Bladder Pump 2" Submersible Pump 4" Submersible Pump Centrifugal Pump Peristaltic Pump Inertial Lift Pump Other:
MATERIALS: Pump/Bailer:
SAMPLING DATA: METHOD: Bailer, Size: O'Bladder Pump 2" Submersible Pump 4" Submersible Pump Syringe Sampler Peristaltic Pump Inertial Lift Pump Other: Other:
MATERIALS: Pump/Bailer: Teflon® Tubing/Rope: Teflon® Polyethylene SAMPLING EQUIPMENT: Dedicated Prepared Off-Site Field Cleaned Metals samples field filtered? Ves I No Method:
APPEARANCE: Clear Turbid Color: Contains Immiscible Liquid FIELD DETERMINATIONS: See attached form for field parameter data.
DUP: No Di Yes Name:
Signature: Date: Date:

2 Park Way, Upper Saddle River, NJ 07458 Phone: (201) 574-4700 Fax: (201) 236-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

Project Name:	Patriogue Mose	Project Number: /5302/
Client:	BC	Date: (./16/202)
Personnel:	AFV/SFT	Well ID: MW-3
Purge/Sample Depth:	~ガ.5'	Sample ID: 100-3-20220616
	COLLEGIONS OF THE PARTY OF THE	THE CONTRACTOR OF THE CONTRACTOR

	A STATE OF THE STA	17,440	1 30 30	- Inchil (1994)	-	neters	ified Paran	Certi		
Comments	ing Rate L/min)		DTW (ft)	ORP (mV)	Turbidity (NTU)	DO (mg/L)	Cond (mS/cm)	Temp (°C)	рН	Actual Time
	0	25	1.77	-117	319.6	5.41	0.505	16.82	9.32	<u> प्रमुख</u>
	get men	we few	1.76	-225	6.9	2.68	0.515	14.57	971	18:21
er in seal	173		1.75	-235	4.4	1.77	0.529	16.45	9.92	18:24
191			国/7	-238	4.6	1.44	n ·535	16.41	10.03	
ALLE TERM			1.75	-241	3.7	0.95	15.546	16.34	10.11	
ALL ST	11	116	175	-242	3.7	0.81	0.548	16.35	10.13_	J8:33
		11,171	175	-242	3.5	0.63	0.552	16.34	10.14	08:36
		7.1	1.175	-244	3.4	6.57	0.559	16.31	10.18	28:39
- WHITA	2540	-44	1.45	-242	3.2	8 47	0,560	16.31	10.18	28. 42
	,		1.75	-243	3.2	0.44	0.564		10.19	28:45
		10	175	- 241	3.3	6.38			10.19	28:48
The Control of the Control	1112	10 _ 12b	ALTERNATION OF THE PARTY OF THE	Pr BUIL	0616	- 2022	MUS-3	ECT	ا حمال	08:51
HE CHANGE	S	PON	11 5		≘ Prinof	1 1	15177	Mos		_
All the same	1 (2)	bar.	A Caller	74)- 12	-2000	- 3/	VIVE	- 11		
Ser Buch	λ.									
	71						1			
				-1-01			12			
The late of	7 10 1 40 Km	(4)	1997/1997				25	1 L	10	
and the second	748.40	70	pelly-y-			\sim		H H	11.19	
and the same of the same	P.L.	4 = 3	10 THE	614 _	E Company		7.5 M	hen		
	1.2		A TAT ALC		-3					
	100		759911				-	- 0		
1 1 4			\$100 HILLS			-				
2 0	3				4,					
100	7.8		1 16/14							
TV V						-				
		-			16.300	-	Augusta			
			-		10-74					
Se CAUS		1 5	43 -			3	9.		(*)	
			-			-				

Certified Sample Information: Time of Sample: \(\)8:5\	Analyst Signature:
Instrument Data:	0.1.40
Manufacturer/Model: Horiba 4-52 Serial No. Unit: UOPOFILL	- T. 05
Serial No. Unit: LLO PO 7-(L/)	Serial No. Handheld: JAHR34M()
Calibration Date/Time: Co/ICo/2622	_

Are low-flow parameters subject to field lab certification?

Yes No (not required for CERCLA sites or sites outside of NJ)

If yes, low-flow data must be accompanied by a completed "Field Calibration Record, Horiba U-52" form or equivalent.

Upper Saddle River, NJ Office

LOW-FLOW GROUNDWATER SAMPLING FIELD DATA

Well Number: MU-3

Sample I.D.: New - 3 - 2022(C6 (G

WELL DATA: Casing Diameter:	Project: Pakague MGP Date: 6/ Personnel: AFV 38FT Weather:	(6/22 Time: 18818 Overce + 1 fair Air Temp.: (267
METHOD: Bailer, Size: Defladder Pump 2" Submersible Pump 4" Submersible Pump MATERIALS: Pump Bailer: Deflor Stainless Steel Polypthylene	Casing Diameter: Static Water Level: Staticless Steel Galv. Steel PVC DEPTH TO: Static Water Level: Galv. Steel Ga	Teflon® ☐ Open rock cottom? ☐ Yes ☐ No corroded) ② Yes ☐ No lo s ☐ No r Casing Intact? ② Yes ☐ No
MATERIALS: Pump/Bailer:	METHOD: Bailer, Size: Bail	
Pumping Rate: Down Number of Well Volumes Removed:	MATERIALS: Pump/Bailer: Stainless Steel	ubing/Rope: Polyethylene Polypropylene
METHOD: Bailer, Size: Steel Pump define Pu	Pumping Rate: 250ml / min Elapsed Time: 30ml Volume F Was well Evacuated? 2 Yes 2 No Number of We	Pumped: 2.5 gallers ell Volumes Removed:
Stainless Steel SAMPLING EQUIPMENT: Dedicated Prepared Off-Site Field Cleaned Metals samples field filtered? APPEARANCE: Clear Turbid Color: Contains Immiscible Liquid FIELD DETERMINATIONS: See attached form for field parameter data. DUP: No Yes Name: DUP - 2622 000 100 MS/MSD: No Yes Name: I certify that this sample was collected and handled in accordance with applicable regulatory and project protocols.	METHOD: Bailer, Size: Standar Pump 2" Submersible	
SAMPLING EQUIPMENT: Dedicated Prepared Off-Site Field Cleaned Metals samples field filtered? Ves No Method: APPEARANCE: Clear Turbid Color: Contains Immiscible Liquid FIELD DETERMINATIONS: See attached form for field parameter data. DUP: No Ves Name: DUP - 2622 06 16 MS/MSD: No Ves Name:	The color in the color of the c	sprigittope.
APPEARANCE: Clear Turbid Color: Contains Immiscible Liquid FIELD DETERMINATIONS: See attached form for field parameter data. DUP: No Ves Name: DUP - 26220616 MS/MSD: No Ves Name:	SAMPLING EQUIPMENT: Dedicated Prepared Off-Site	
DUP: IT No IZYES Name: DUP - 26220616 MS/MSD: INO IZYES Name: DUP - 26220616 I certify that this sample was collected and handled in accordance with applicable regulatory and project protocols.		Contains Immiscible Liquid
MS/MSD: No Yes Name: I certify that this sample was collected and handled in accordance with applicable regulatory and project protocols.	FIELD DETERMINATIONS: See attached form for field parameter data.	
6/11/2/22	DUP: Dr No DrYes Name: DUP - 26220616 MS/MSD: Dr No DrYes Name:	
Signature: Date: Date:	I certify that this sample was collected and handled in accordance with applicable regulatory and p	1 /
	Signature: Date:	6/16/22

2 Park Way, Upper Saddle River, NJ 07458 Phone: (201) 574-4700 Fax: (201) 236-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

_	Personnel:	AFIL	yn M	6d	Project Number: 1530,21 Date: 61/6/27 Well ID: MW-135 Sample ID: MW-135-26724610					
Purge/San	ple Depth:	~10-			i — Document	**************************************	Sample ID:	MW-133	-2022 4 414	
		Certi	ified Parai		DOMESTIC	11 611	W 911	A HERELING AND THE PARTY OF THE		
Actual Time	pН	Temp (°C)	Cond (mS/cm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)	OTW (ft)	Pumping Rate (mL/min)	Comments	
19:07	10.3	18.17	0.518	7.51	22.9	-115	1-39	950	in to	
19-10	42.07	18.18	0.501	837	17.4	-101	1-39	ACCEPTANCE OF SHAPE	S U	
09:13	9.13	19.18	6.506	ماا. ها	17.7	-93	1.39		da a a	
04:16	494	18.20	0.463	457	12.5	781	1-39	-11 LAT 21-E.		
09:19	8.31	19-18	0.487	7 82	12.7	-72	1.39		HORKER HERE	
09:22	4-36	18.19	0-484	8.79	12.7	-63	1.39		TAC THESSY	
19:25	8.45	18.20	0.488	7.97	12.4	-51	1-39	A 100		
09:12	8.48	18.25	0.445	8:31	11.7	-42	1.39	TA SO	St	
69:31	8.53	18 19	0.474	8.02	-10.6	-37	1-79	Sill Emsiredian	AND RELIGIOUS TOWN	
09:34	4.57		0.471	85.14	10.4	-30	1.39	Anti-	1	
	8.62		0 408	72.99	9.4	-25	1.39		-	
09:40	Cou	5 CT	Mei -	135-	20220	(6)	r Lindagania	10 2 10 Y	BY WELL	
		- 5	DER CO	1.2	-1-1 Z-1 -1-	and " Y	CHE	990 JJ 1959	0.000 P. The	
	\ <u>.</u>							106	A PAGE 1967 Production	
		2711 - 3	59.00 5	radive.		S (4)	- 200	1.00 x15-0		
					2001	MAN XIII :	111 = 100	Secured was very	č .	
7				<u> </u>	R			97	_	
	0.489	di Nic		\mathcal{L}			- Seins Sy	nec measurible	1 SACH TICK	
	masy convelv	9			<u> </u>	200	a compact	N.	951	
		1624/11	케글			1 173		of a likes	1 1	
	=			= = :	~	5		///4/5/10	The state of the s	
	ļ	Funta etti	4 TH	8 - "		101			* H. W.	
				ाहरती.	THE PERMANENT	ilps: mark	E (en undus	Make middle or the	
	64						-	-		
			-00			_		2		
		1		1					older of the	

				7.5	_					
Certified S Time of	ample Inf f Sample:			Sta.		Analyst	Signature:	Smyle	Z	
Instrumen	t Data: È	- 1	- 1				•			
N	/lanufactur	rer/Model:		ariba	4-5	2_			5 4) 4.	_
	Serial	l No. Unit:	<u> </u>	00071	КV	Serial No.	Handheld:	JAHR	_ & 4 ru	(0)
Ca	libration D	ate/Time:	G	11419	2		•			

Are low-flow parameters subject to field lab certification?

Yes Yes No (not required for CERCLA sites or sites outside of NJ) If yes, low-flow data must be accompanied by a completed "Field Calibration Record, Horiba U-52" form or equivalent.

LOW-FLOW GROUNDWATER SAMPLING FIELD DATA

	Caldwell Upper Saddle River, NJ Office	Well Number: MU-135 Sample 1.D.: MW-135-2022 (if different from well no.)
-	Project: Afdrague Met	Date: 6/10/22 Time: 9:07 Weather: Doctor Rain Air Temp.: 66
	DEPTH TO: Static Water Level:	el PVC Teflon® Open rock /ell:ft Other: rell clean to bottom? Yes No (not bent or corroded) Yes No Yes No Yes No is Inner Casing Intact? Yes No Yes No
	VOLUME OF WATER: Standing in well:	To be purged:
	METHOD: □ Bailer, Size: □ Bladder Pump □ Centrifugal Pump □ Peristaltic Pu	□ 2" Submersible Pump □ 4" Submersible Pump mp □ Inertial Lift Pump □ Other:
	MATERIALS: Pump/Bailer: Stainless Steel PVC Other: Pumping Rate: South First Elapsed Time: Was well Evacuated? Yes No N PURGING EQUIPMENT: Dedicated Prepared Off	Tubing Rope: Polyethylene Polypropylene Other: Volume Pumped: Clames Removed: Field Cleaned
	SAMPLING DATA: METHOD: Bailer, Size: Syringe Sampler Peristaltic Pump Ine	Submersible Pump
	MATERIALS Pupp/Bailer: Teflon® Stainless Steel SAMPLING EQUIPMENT: Dedicated Prepared Metals samples field filtered? Yes No Method APPEARANCE: Clear Turbid Color: FIELD DETERMINATIONS: See attached form for field para DUP: No Yes Name: MS/MSD: No Yes Name:	od: Contains Immiscible Liquid meter data.
	Signature:	egulatory and project protocols. Date:
		/ ()

2 Park Way, Upper Saddle River, NJ 07458 Phone: (201) 574-4700 Fax: (201) 236-1607

NJ FIELD LAB ID# 02023 LOW-FLOW GROUNDWATER FIELD DATA SHEET

Project Name: Patchoque MGP	Project Number: /530Q/
Client: BC	Date: 06/16/22'
Personnel: AFV/SF)	Well ID: MW-13D
Purge/Sample Depth: ~ 2/'	Sample ID: MW-13D-20220616
- TOP CHENCE AND RETYREALTH AND TWO DAME	CONTROL SANDYSHIP TO MAKE THE CONTROL OF THE CONTRO

		Cert	ified Para	meters	rate Bace	exting at a	75	MO - 577 (99) C	Gr. T. HANTELL
Actual		Temp	Cond	DO	Turbidity	ORP	DTW	Pumping Rate	iii walifee r
Time	pН	(°C)	(mS/cm)	(mg/L)	(NTU)	(mV)	(ft)	(mL/min)	Comments
09:51	7.31	17.65	6.376	1.19	104	53	1.32	250	i i
उप:54	Co .36	17.25	10.201	0.27	90.3	69	1.32	24 a 2290 a	20
09:57	6.07	17.11	6.364	0.39	85.0	46	1.32	Kinde 8	(2 - 10/2/ Bir i
10:00	5.91	7.01	0361	6.35	73.5	84	1.32	- 30 10	A pleaseming
10:03	579	16.98	0.357	0.32	8.22	96	1.32	III.	HIAR SWEET
10.00	5.71	16.96	0.355		62.7	96	1.32	Pe	pmo" 1=5M*
10:09	5.66	16.47	0.355	0.28	41.8	99	1.32	1 11661 1221	
10:12	5.63	16.96	0.355	0.28	33.5	103	1.32	Users 22	F
10:15	5.61		0.355	0.26	39.1	105	1.32	As Mindia	(194) SAS-183 AS
10:18	5.61	16.96	6.356	0.28	37.4	105	1,32	207	
10:21	5.61		0.356	0.27	31.8	106	1.32	4	-
10:24	Corr	EUT	MW-	13D-	20221060	G H	The state of the s	Park Jack	Z Stanta Mile.
	- 2 -0	2,45,111	Section 1	A Marie Marie	a and the		DV Z	28877 122 (5	PURELES CONTROL
	100	- 19	official tra	1 1/2	933	Manual 1	18" 18	District A con-	MAST STEED FANT COLD
			<u> </u>		32	1		200	THE STREET WILLIAM OF
<u> </u>	77	0243	Trest Ta	100000	- x m	N= 0	- 30		- 19- 1-71
	- 20			i in the	RT M	79-40-KF-86	maria	INTERNATION OF SERVICE	[F]
					- 6	//	4		profession and the second
	0.001250	1 1	11 18	Null I			** Child		
	14073/1975/4	1 35%					2-171838	-9	
		51,000			875	//	-		and haden
								11. 10.221113	POLICE CONTRACTOR INC. I.
			/ //	0.00	//		owns E		= NANTAL - = A
				116	10	/		100	SHALLE .
								\times	
							1//	1	Jul X
							100		
			phas/ADA)	= = /\	-314-	-, = M2	E 10 1 10 10 10 10 10 10 10 10 10 10 10 1	militar battage	regulated thinleggler
			a 25 (1 9			Charles A	The same of	
		150	: 12/2:	1000	1100	5 -		7.4 3	27773 material
		55	7. 7.	2.4			W		Ш

		eparthy)	/	-18,4=	T = M			JM X	1, 1	
	_'%'	1.	1010	101611			72. 12	57.7% massa 34 mm	ded	
Certified Sample Info Time of Sample: Instrument Data: Manufacture Serial	er/Model: No. Unit:	HO 110A	niba 071K	<u>u-5</u> 2	_	Signature:	JAHR:	34MO		
Calibration Date/Time:										
If yes, low-flow data mus	t be accom	panied by	a complete	d "Field Cal	ibration Recor	d, Horiba U-	52" form or equi	ivalent.		

LOW-FLOW GROUNDWATER SAMPLING FIELD DATA

Upper Saddle River, NJ Office

Well Number: MN - 13DSample I.D.: MN - 13D - 2023 06 06 06 06

	1 100 1000 10
Project: Patchogue MGP Personnel: AFV / SF)	Date: 06/16/22 Time:07:51 Weather: Cloudy / Rainy Air Temp.: Color
	□ Other: □ Other: □ Clean to bottom? □ Yes □ No not bent or corroded) □ Yes □ No ② Yes □ No □ No □ Ved) ② Yes □ No □ Is Inner Casing Intact? □ Yes □ No ② Yes □ No
	☐ 2" Submersible Pump ☐ 4" Submersible Pump □ ☐ Inertial Lift Pump ☐ Other:
MATERIALS: Pump/Bailer: Teflon® Stainless Steel PVC Other: Elapsed Time: 30 m s	Tubing/Rope: Polyethylene Polypropylene Other: Volume Pumped: Polypropylene Other: Polypropy
SAMPLING DATA: METHOD: Syringe Sampler Peristaltic Pump Inert	ubmersible Pump □ 4" Submersible Pump tial Lift Pump □ Other:
MATERIALS: Pump Bailer: Teflon® Stainless Steel SAMPLING EQUIPMENT: Dedicated Prepared Company Prepared Com	I:
APPEARANCE: Clear Turbid Color: FIELD DETERMINATIONS: See attached form for field param	Contains Immiscible Liquid
DUP: No Yes Name:	
I certify that this sample was collected and handled in accordance with applicable re	gulatory and project protocols. Date: 06/16/22

Appendix B: Laboratory Reports

Brown AND Caldwell LABORATORY DATA VERIFICATION AND VALIDATION FORM

1. PROJECT INFORM	MATION	Date: 07/18/2022
Report Number:	410-88035-1	Project Name/Client: Remediation Services / NG Patchogue
Project Number:		Laboratory: Eurofins Lancaster
Project Manager:		Sampler(s): Antonio Velazquez
Project Manager:	Neith Bogaton	Sampler(s): Antonio velazquez
2. SAMPLE INFORM	ΙΔΤΙΟΝ	
	ling: Q1 2022 Groundwat	er Sampling Sample Date(s): 06/14,15,16/2022
Total number of s	samples: 15	
13 Groundwater Surface Water	Drinking Water Wastewater	Soil Air 1 Field Blank 1 Trip Blank Soil Gas Equipment Blank Other
Analyses Requested:	AHs (8270D); BTEX (8260C)	
Laboratory Limit	Requested: RL, MDL Method Detection	n Limit (MDL), Reporting Limit (RL), Practical Quantitation Limit (PQL), etc.)
3. DATA VERIFICATI		
✓ Yes No		Custody intact (missing signatures, samples, dates/times, etc.)?
Ves No □	Notes: No issues to repo NA Were custody sea	Is intact on sample bottles and/or coolers as necessary?
V les	Notes: No issues to repo	
Ves No [eratures within the acceptable range per method requirements?
	Notes: No issues to repo	
✓ Yes No [NA Were samples phy	ysically and chemically preserved properly (headspace, pH, etc.)?
	Notes: Comment 1	
✓ Yes No [rative included, if applicable?
	Notes: Comment 2	
✓ Yes No [—	labeled, analyzed, and reported correctly?
Yes No [lab immediately to verify. Notes:	extracted and/or analyzed within method holding time?
[V] 195 [] 110 [Notes: No issues to repo	, ,
✓Yes No [_	analytes and methods reported?
	Notes: No issues to repo	rt
		sediment concentrations reported as dry weight?
l <u> </u>	l lab immediately to verify. Notes:	
<u> </u>	✓ NA If analyzed for the Yes No ✓ NA	rollowing analytes, were the following true for all analytes? TOC > DOC Yes No ✓ NA Total Metals > Dissolved Metals
	Yes No 🗸 NA	COD > BOD Yes No ✓ NA TKN > Organic Nitrogen or Ammonia
If no, call	lab immediately to verify. Notes:	None
Yes No If no, call	NA Were MDLs, PQLs	, RLs, and/or dilution factors appropriate? No issues to report
	_	were all target analytes below the PQL/RL appropriately qualified?
— — -	lab immediately to verify. Notes:	
✓ Yes No	 -	plicates collected?
	Notes: Comment 3	

Brown AND Caldwell LABORATORY DATA VERIFICATION AND VALIDATION FORM

4. DATA VALIDATION (Refer to data verification and validation guidelines, as applicable) Report No: 410-88035-1 Yes No Were surrogate recoveries within acceptable control limits? Notes: Comment 4
Yes No Were equipment, field, trip, and/or laboratory blanks free of target analyte detections? Notes: No issues to report
Yes No Were any laboratory control samples (LCS) or blank spikes (BS) reported? Notes: No issues to report
Yes No Were any matrix spikes/matrix spike duplicates (MS/MSD) reported for project samples? No issues to report
Yes No Were any laboratory duplicates reported for project samples? Notes: None
Yes No Was further laboratory QC provided? (serial dilutions, calibration or internal standards, etc.) Notes: None
5. COMMENTS AND SUMMARY OF ACTIONS (Attach additional pages if necessary) There were no comments for this report.
5. COMMENTS AND SUMMARY OF ACTIONS (Attach additional pages if necessary) Comment 1: Sample MW-7S-20220615 was noted with headspace upon analysis greater than 6mm for VOCs (Method 8260). Associated sample detections are qualified as estimated, J, and non-detections are qualified as rejected, R, reason code 9.
Comment 2: Sample MW-3-20220616 was reanalyzed outside of holding time on 06-28-2022 and 06-29-2022 and received acceptable surrogate results. Reanalyzed results are reported in the DVEDD with 'reportable_result' column filled with 'No'.
Comment 3: DUP-20220616 is the sample duplicate for MW-3-20220616. All RPDs were within control limits with the exception of Ethylbenzene, Acenaphthene, Acenaphthylene, Anthracene, Benzo(a)anthracene, Chrysene, Fluoranthene, Fluorene, Naphthalene, Phenanthrene, and Pyrene. Parent and duplicate concentrations for associated analytes are qualified as estimated, J, reason code 8. See page 3 for details.
Comment 4: The surrogates 1-methylnaphthalene-d10 and fluoranthene-d10 percent recoveries for sample MW-3-20220616 were above control limits for the base/neutral fraction. Associated sample detections are qualified as estimated, J, reason code 3H. Associated sample non-detections are not qualified.

Page 2 of 3 Terry ONeill Initials: TAO Signature of Data Validator(s) **Reviewer Initials**

LABORATORY DATA VERIFICATION AND VALIDATION

Sample Duplicate Comparison

PROJECT INFORMATION												
Report Number:	Report Number: 410-88035-1			_	Remediation Services / NG Patchogue							
Project Number: 153021			=	ı	aboratory:		Eurofins Lancaster					
Project Manager: Keith Bogatch			1	-	Task/Purpose of	Sampling:				Antonio Velaz	quez	
SAMPLE INFORMATION												
Parent Sample ID:		MW-3-202206			6/16/22 8:51		Matrix:		WG	<u>-</u>		
Duplicate Sample ID:		DUP-2022061	.6	Date/Time:	6/16/22 8:51		Matrix:	Matrix: WG				
Analytical Results ^a		Relative Percent Compa	` '	Meth	od Detection	on Limit (M	DL) Compari	son (If Needed)				
Analytes	Unit				Water: RPD > 20%?	MW-3-20	0220616	DUP-20	0220616	If RPD > Control Limit: Is either	Actions Required	
		MW-3-20220616	DUP-20220616	RPD	Soil:	MDL	5x MDL	MDL	5x MDL	sample conc. $\geq 5X$		
					RPD > 30%?	WIDE	JA WIDE	WIDE	3X WIDE	MDL?		
Benzene	UG/L	0.62	0.55	12%	NO	0.30	1.5	0.30	1.5		No further action required	
Ethylbenzene	UG/L	2.1	1.6	27%	YES	0.40	2.0	0.40	2.0	YES	Qualify detects/non-detects as estimated, J/UJ	
Toluene	UG/L	0.73	0.65	12%	NO	0.20	1.0	0.20	1.0		No further action required	
Xylenes, total	UG/L	1.8	1.2	40%	YES	0.40	2.0	0.40	2.0	NO	No further action required	
Acenaphthene	UG/L	0.71	33	192%	YES	0.010	0.050	0.10	0.50	YES	Qualify detects/non-detects as estimated, J/UJ	
Acenaphthylene	UG/L	0.14	4.2	187%	YES	0.010	0.050	0.010	0.050	YES	Qualify detects/non-detects as estimated, J/UJ	
Anthracene	UG/L	0.35	1.6	128%	YES	0.010	0.050	0.010	0.050	YES	Qualify detects/non-detects as estimated, J/UJ	
Benzo(a)anthracene	UG/L	0.27	0.72	91%	YES	0.010	0.050	0.010	0.050	YES	Qualify detects/non-detects as estimated, J/UJ	
Benzo(b)fluoranthene	UG/L	0.010	0.011	10%	YES	0.010	0.050	0.010	0.050	NO	No further action required	
Chrysene	UG/L	0.14	0.40	96%	YES	0.010	0.050	0.010	0.050	YES	Qualify detects/non-detects as estimated, J/UJ	
Fluoranthene	UG/L	3.3	14	124%	YES	0.010	0.050	0.10	0.50	YES	Qualify detects/non-detects as estimated, J/UJ	
Fluorene	UG/L	0.63	9.7	176%	YES	0.010	0.050	0.010	0.050	YES	Qualify detects/non-detects as estimated, J/UJ	
Naphthalene	UG/L	0.14	84	199%	YES	0.030	0.15	0.30	1.5	YES	Qualify detects/non-detects as estimated, J/UJ	
Phenanthrene	UG/L	1.8	11	144%	YES	0.030	0.15	0.30	1.5	YES	Qualify detects/non-detects as estimated, J/UJ	
Pyrene	UG/L	3.7	18	132%	YES	0.010	0.050	0.10	0.50	YES	Qualify detects/non-detects as estimated, J/UJ	

^aResults in red text and italics were below reporting limits. Values are reporting limits for comparison purposes only.

Relative Percent Difference (RPD) is a quantitative indicator of quality assurance and quality control (QA/QC) for repeated measurements (i.e. duplicates) where the outcome is expected to be the same. It is calculated using the following equation:

$$RPD = \left| \frac{x_1 - x_2}{(x_1 + x_2)/2} \right| \times 100$$

Environment Testing America

ANALYTICAL REPORT

Eurofins Lancaster Laboratories Environment Testing, LLC 2425 New Holland Pike Lancaster, PA 17601 Tel: (717)656-2300

Laboratory Job ID: 410-88035-1 Client Project/Site: Patchogue, NY

Revision: 1

For:

eurofins

Brown and Caldwell 500 North Franklin Turnpike Suite 306 Ramsey, New Jersey 07446

Attn: Mr. James L Marolda

Barb Weyandt

Authorized for release by: 6/30/2022 12:40:04 PM

Barbara Weyandt, Project Manager (717)556-7264

Barbara.Weyandt@et.eurofinsus.com

.....LINKS

Review your project results through EOL

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Brown and Caldwell Project/Site: Patchogue, NY

> Analytical test results meet all requirements of the associated regulatory program (e.g., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis. Data qualifiers are applied to note exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- · QC results that exceed the upper limits and are associated with non-detect samples are qualified but further narration is not required since the bias is high and does not change a non-detect result. Further narration is also not required with QC blank detection when the associated sample concentration is non-detect or more than ten times the level in the blank.
- · Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD is performed, unless otherwise specified in the method.
- · Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative. Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Measurement uncertainty values, as applicable, are available upon request.

Test results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" and tested in the laboratory are not performed within 15 minutes of collection.

This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. The foregoing express warranty is exclusive and is given in lieu of all other warranties, expressed or implied, except as otherwise agreed. We disclaim any other warranties, expressed or implied, including a warranty of fitness for particular purpose and warranty of merchantability. In no event shall Eurofins Lancaster Laboratories Environmental, LLC be liable for indirect, special, consequential, or incidental damages including, but not limited to, damages for loss of profit or goodwill regardless of (A) the negligence (either sole or concurrent) of Eurofins Lancaster Laboratories Environmental and (B) whether Eurofins Lancaster Laboratories Environmental has been informed of the possibility of such damages. We accept no legal responsibility for the purposes for which the client uses the test results. Except as otherwise agreed, no purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Barb Weyandt

Barbara Weyandt **Project Manager** 6/30/2022 12:40:05 PM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	10
Surrogate Summary	22
QC Sample Results	24
QC Association Summary	
Lab Chronicle	35
Certification Summary	39
Method Summary	41
Sample Summary	42
Chain of Custody	43
Receint Checklists	45

4

6

8

10

12

1 1

Definitions/Glossary

Client: Brown and Caldwell Job ID: 410-88035-1

Project/Site: Patchogue, NY

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

cn Refer to Case Narrative for further detail

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

cn Refer to Case Narrative for further detail

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

S1- Surrogate recovery exceeds control limits, low biased.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this rep
--

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery

1C Result is from the primary column on a dual-column method.
 2C Result is from the confirmation column on a dual-column method.

CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

4

_

7

Я

11

14

14

Case Narrative

Client: Brown and Caldwell
Project/Site: Patchogue, NY

Job ID: 410-88035-1

Job ID: 410-88035-1

Laboratory: Eurofins Lancaster Laboratories Environment Testing, LLC

Narrative

Job Narrative 410-88035-1

Revision

The report being provided is a revision of the original report sent on 6/30/2022. The report (revision 1) is being revised due to: change client ID MW-105 to MW-10S.

Receipt

The samples were received on 6/17/2022 10:41 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 0.9° C and 2.0° C.

Receipt Exceptions

The COC lists 2 containers, but 4 containers were received at the lab, Trip Blank-20220616 (410-88035-15)

GC/MS VOA

Method 8260D: The method requirement for no headspace was not met. The following volatile sample was analyzed with headspace in the sample container(s): MW-7S-20220615 (410-88035-4).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270E SIM: Surrogate recovery for the following sample was outside control limits: MW-3-20220616 (410-88035-11). Re-extraction and/or re-analysis was performed outside of holding time with acceptable results.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

J

8

11

4.0

14

Lab Sample ID: 410-88035-2

Lab Sample ID: 410-88035-5

Lab Sample ID: 410-88035-6

Client: Brown and Caldwell Project/Site: Patchogue, NY

Client Sample ID: MW-1-20220614 Lab Sample ID: 410-88035-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Fluorene	0.011 J	0.050	0.010 ug/L	1 8270E SIM	Total/NA

Client Sample ID: MW-10S-20220614

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Dyrono	0.010	ī	0.050	0.010	ua/l		_	8270E SIM	Total/NA

Client Sample ID: FB-20220614 Lab Sample ID: 410-88035-3

No Detections.

Client Sample ID: MW-7S-20220615 Lab Sample ID: 410-88035-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Benzene	0.31	J cn	1.0	0.30	ug/L		8260D	Total/NA
Acenaphthene	0.16		0.051	0.010	ug/L	1	8270E SIM	Total/NA
Acenaphthylene	0.037	J	0.051	0.010	ug/L	1	8270E SIM	Total/NA
Anthracene	0.091		0.051	0.010	ug/L	1	8270E SIM	Total/NA
Benzo[a]anthracene	0.075		0.051	0.010	ug/L	1	8270E SIM	Total/NA
Benzo[a]pyrene	0.047	J	0.051	0.010	ug/L	1	8270E SIM	Total/NA
Benzo[b]fluoranthene	0.059		0.051	0.010	ug/L	1	8270E SIM	Total/NA
Benzo[g,h,i]perylene	0.037	J	0.051	0.010	ug/L	1	8270E SIM	Total/NA
Benzo[k]fluoranthene	0.059		0.051	0.010	ug/L	1	8270E SIM	Total/NA
Chrysene	0.062		0.051	0.010	ug/L	1	8270E SIM	Total/NA
Dibenz(a,h)anthracene	0.050	J	0.051	0.020	ug/L	1	8270E SIM	Total/NA
Fluoranthene	0.087		0.051	0.010	ug/L	1	8270E SIM	Total/NA
Fluorene	0.13		0.051	0.010	ug/L	1	8270E SIM	Total/NA
Indeno[1,2,3-cd]pyrene	0.046	J	0.051	0.020	ug/L	1	8270E SIM	Total/NA
Naphthalene	0.15		0.071	0.030	ug/L	1	8270E SIM	Total/NA
Phenanthrene	0.13		0.071	0.030	ug/L	1	8270E SIM	Total/NA
Pyrene	0.092		0.051	0.010	ug/L	1	8270E SIM	Total/NA

Client Sample ID: MW-14S-20220615

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Acenaphthene	0.61		0.050	0.010	ug/L		8270E SIM	Total/NA
Acenaphthylene	0.021	J	0.050	0.010	ug/L	1	8270E SIM	Total/NA
Anthracene	0.026	J	0.050	0.010	ug/L	1	8270E SIM	Total/NA
Benzo[a]anthracene	0.013	J	0.050	0.010	ug/L	1	8270E SIM	Total/NA
Benzo[a]pyrene	0.013	J	0.050	0.010	ug/L	1	8270E SIM	Total/NA
Benzo[b]fluoranthene	0.012	J	0.050	0.010	ug/L	1	8270E SIM	Total/NA
Chrysene	0.015	J	0.050	0.010	ug/L	1	8270E SIM	Total/NA
Fluoranthene	0.027	J	0.050	0.010	ug/L	1	8270E SIM	Total/NA
Fluorene	0.12		0.050	0.010	ug/L	1	8270E SIM	Total/NA
Naphthalene	0.30		0.071	0.030	ug/L	1	8270E SIM	Total/NA
Phenanthrene	0.10		0.071	0.030	ug/L	1	8270E SIM	Total/NA
Pyrene	0.034	J	0.050	0.010	ug/L	1	8270E SIM	Total/NA

Client Sample ID: MW-12S-20220615

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	0.048	J	0.050	0.010	ug/L		_	8270E SIM	Total/NA
Anthracene	0.011	J	0.050	0.010	ug/L	1		8270E SIM	Total/NA
Benzo[a]anthracene	0.014	J	0.050	0.010	ug/L	1		8270E SIM	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Lancaster Laboratories Environment Testing, LLC

2

ວ

7

8

111

Client: Brown and Caldwell Project/Site: Patchogue, NY

Client Sample ID: MW-12S-20220615 (Continued)

Lab Sample ID: 410-88035-6

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[b]fluoranthene	0.014		0.050	0.010	ug/L	1	_	8270E SIM	Total/NA
Benzo[k]fluoranthene	0.011	J	0.050	0.010	ug/L	1		8270E SIM	Total/NA
Chrysene	0.013	J	0.050	0.010	ug/L	1		8270E SIM	Total/NA
Fluoranthene	0.020	J	0.050	0.010	ug/L	1		8270E SIM	Total/NA
Fluorene	0.017	J	0.050	0.010	ug/L	1		8270E SIM	Total/NA
Pyrene	0.037	J	0.050	0.010	ug/L	1		8270E SIM	Total/NA

Client Sample ID: MW-12D-20220615

Lab Sample ID: 410-88035-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	0.015		0.051	0.010	ug/L	1	_	8270E SIM	Total/NA
Anthracene	0.018	J	0.051	0.010	ug/L	1		8270E SIM	Total/NA
Benzo[a]anthracene	0.016	J	0.051	0.010	ug/L	1		8270E SIM	Total/NA
Benzo[a]pyrene	0.011	J	0.051	0.010	ug/L	1		8270E SIM	Total/NA
Benzo[b]fluoranthene	0.016	J	0.051	0.010	ug/L	1		8270E SIM	Total/NA
Chrysene	0.017	J	0.051	0.010	ug/L	1		8270E SIM	Total/NA
Fluoranthene	0.041	J	0.051	0.010	ug/L	1		8270E SIM	Total/NA
Fluorene	0.028	J	0.051	0.010	ug/L	1		8270E SIM	Total/NA
Phenanthrene	0.075		0.071	0.030	ug/L	1		8270E SIM	Total/NA
Pyrene	0.044	J	0.051	0.010	ug/L	1		8270E SIM	Total/NA

Client Sample ID: MW-8S-20220615

Lab Sample ID: 410-88035-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	0.16		0.051	0.010	ug/L	1	_	8270E SIM	Total/NA
Benzo[a]anthracene	0.035	J	0.051	0.010	ug/L	1		8270E SIM	Total/NA
Benzo[a]pyrene	0.026	J	0.051	0.010	ug/L	1		8270E SIM	Total/NA
Benzo[b]fluoranthene	0.046	J	0.051	0.010	ug/L	1		8270E SIM	Total/NA
Benzo[g,h,i]perylene	0.025	J	0.051	0.010	ug/L	1		8270E SIM	Total/NA
Benzo[k]fluoranthene	0.017	J	0.051	0.010	ug/L	1		8270E SIM	Total/NA
Chrysene	0.042	J	0.051	0.010	ug/L	1		8270E SIM	Total/NA
Fluoranthene	0.068		0.051	0.010	ug/L	1		8270E SIM	Total/NA
Indeno[1,2,3-cd]pyrene	0.025	J	0.051	0.020	ug/L	1		8270E SIM	Total/NA
Phenanthrene	0.088		0.071	0.030	ug/L	1		8270E SIM	Total/NA
Pyrene	0.079		0.051	0.010	ug/L	1		8270E SIM	Total/NA

Client Sample ID: MW-11S-20220615

Lab Sample ID: 410-88035-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	0.90	J	1.0	0.30	ug/L	1	_	8260D	Total/NA
Xylenes, Total	0.89	J	1.0	0.40	ug/L	1		8260D	Total/NA
Acenaphthylene	0.94		0.051	0.010	ug/L	1		8270E SIM	Total/NA
Anthracene	2.6		0.051	0.010	ug/L	1		8270E SIM	Total/NA
Benzo[a]anthracene	1.5		0.051	0.010	ug/L	1		8270E SIM	Total/NA
Benzo[a]pyrene	0.56		0.051	0.010	ug/L	1		8270E SIM	Total/NA
Benzo[b]fluoranthene	1.1		0.051	0.010	ug/L	1		8270E SIM	Total/NA
Benzo[g,h,i]perylene	0.55		0.051	0.010	ug/L	1		8270E SIM	Total/NA
Benzo[k]fluoranthene	0.36		0.051	0.010	ug/L	1		8270E SIM	Total/NA
Chrysene	1.6		0.051	0.010	ug/L	1		8270E SIM	Total/NA
Dibenz(a,h)anthracene	0.10		0.051	0.020	ug/L	1		8270E SIM	Total/NA
Fluoranthene	7.5		0.051	0.010	ug/L	1		8270E SIM	Total/NA
Fluorene	3.5		0.051	0.010	ug/L	1		8270E SIM	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Lancaster Laboratories Environment Testing, LLC

2

Δ

5

7

0

10

12

14

Client: Brown and Caldwell Project/Site: Patchogue, NY

Client Sample ID: MW-11S-20220615 (Continued)

Lab Sample ID: 410-88035-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Indeno[1,2,3-cd]pyrene	0.51		0.051	0.020	ug/L		_	8270E SIM	Total/NA
Naphthalene	3.4		0.071	0.030	ug/L	1		8270E SIM	Total/NA
Phenanthrene	1.9		0.071	0.030	ug/L	1		8270E SIM	Total/NA
Acenaphthene - DL	49		0.51	0.10	ug/L	10		8270E SIM	Total/NA
Pvrene - DL	12		0.51	0.10	ua/L	10		8270E SIM	Total/NA

Client Sample ID: MW-4S-20220616 Lab Sample ID: 410-88035-10

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene	0.23	0.050	0.010	ug/L	1	_	8270E SIM	Total/NA
Benzo[a]anthracene	0.019 J	0.050	0.010	ug/L	1		8270E SIM	Total/NA
Benzo[a]pyrene	0.014 J	0.050	0.010	ug/L	1		8270E SIM	Total/NA
Benzo[b]fluoranthene	0.029 J	0.050	0.010	ug/L	1		8270E SIM	Total/NA
Benzo[g,h,i]perylene	0.012 J	0.050	0.010	ug/L	1		8270E SIM	Total/NA
Benzo[k]fluoranthene	0.012 J	0.050	0.010	ug/L	1		8270E SIM	Total/NA
Chrysene	0.015 J	0.050	0.010	ug/L	1		8270E SIM	Total/NA
Fluoranthene	4.1	0.050	0.010	ug/L	1		8270E SIM	Total/NA
Fluorene	8.4	0.050	0.010	ug/L	1		8270E SIM	Total/NA
Phenanthrene	0.10	0.071	0.030	ug/L	1		8270E SIM	Total/NA
Pyrene	5.8	0.050	0.010	ug/L	1		8270E SIM	Total/NA
Acenaphthene - DL	30	0.50	0.10	ug/L	10		8270E SIM	Total/NA

Client Sample ID: MW-3-20220616

Lab Sample ID: 410-88035-11

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac [) Method	Prep Type
Benzene	0.62		1.0	0.30	ug/L		8260D	Total/NA
Ethylbenzene	2.1		1.0	0.40	ug/L	1	8260D	Total/NA
Toluene	0.73	J	1.0	0.20	ug/L	1	8260D	Total/NA
Xylenes, Total	1.8		1.0	0.40	ug/L	1	8260D	Total/NA
Acenaphthene	0.71	cn	0.050	0.010	ug/L	1	8270E SIM	Total/NA
Acenaphthylene	0.14	cn	0.050	0.010	ug/L	1	8270E SIM	Total/NA
Anthracene	0.35	cn	0.050	0.010	ug/L	1	8270E SIM	Total/NA
Benzo[a]anthracene	0.27	cn	0.050	0.010	ug/L	1	8270E SIM	Total/NA
Chrysene	0.14	cn	0.050	0.010	ug/L	1	8270E SIM	Total/NA
Fluoranthene	3.3	cn	0.050	0.010	ug/L	1	8270E SIM	Total/NA
Fluorene	0.63	cn	0.050	0.010	ug/L	1	8270E SIM	Total/NA
Naphthalene	0.14	cn	0.070	0.030	ug/L	1	8270E SIM	Total/NA
Phenanthrene	1.8	cn	0.070	0.030	ug/L	1	8270E SIM	Total/NA
Pyrene	3.7	cn	0.050	0.010	ug/L	1	8270E SIM	Total/NA

Client Sample ID: MW-13S-20220616

Lab Sample ID: 410-88035-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D M	lethod	Prep Type
Benzene	1.3		1.0	0.30	ug/L	1	82	260D	Total/NA
Ethylbenzene	0.91	J	1.0	0.40	ug/L	1	8	260D	Total/NA
Toluene	0.52	J	1.0	0.20	ug/L	1	8	260D	Total/NA
Xylenes, Total	1.0		1.0	0.40	ug/L	1	8	260D	Total/NA
Acenaphthylene	0.72		0.050	0.010	ug/L	1	8	270E SIM	Total/NA
Anthracene	1.7		0.050	0.010	ug/L	1	83	270E SIM	Total/NA
Benzo[a]anthracene	0.27		0.050	0.010	ug/L	1	8	270E SIM	Total/NA
Benzo[a]pyrene	0.013	J	0.050	0.010	ug/L	1	83	270E SIM	Total/NA
Benzo[b]fluoranthene	0.020	J	0.050	0.010	ug/L	1	8	270E SIM	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Lancaster Laboratories Environment Testing, LLC

Client: Brown and Caldwell Project/Site: Patchogue, NY

Client Sample ID: MW-13S-20220616 (Continued)

Lab Sample ID: 410-88035-12

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chrysene	0.18	0.050	0.010	ug/L	1	_	8270E SIM	Total/NA
Fluoranthene	2.1	0.050	0.010	ug/L	1		8270E SIM	Total/NA
Fluorene	3.5	0.050	0.010	ug/L	1		8270E SIM	Total/NA
Phenanthrene	3.5	0.070	0.030	ug/L	1		8270E SIM	Total/NA
Pyrene	2.2	0.050	0.010	ug/L	1		8270E SIM	Total/NA
Acenaphthene - DL	18	0.25	0.050	ug/L	5		8270E SIM	Total/NA
Naphthalene - DL	36	0.35	0.15	ug/L	5		8270E SIM	Total/NA

Client Sample ID: MW-13D-20220616

Analyte	Result	Qualifier	RL	MDL Ur	nit Dil Fa	c D	Method	Prep Type
Fluoranthene	0.011	J	0.050	0.010 ug	g/L	1 _	8270E SIM	Total/NA
Pyrene	0.013	J	0.050	0.010 ug	g/L	1	8270E SIM	Total/NA

Client Sample ID: DUP-20220616

Lab Sample ID: 410-88035-14

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Benzene	0.55	J	1.0	0.30	ug/L		8260D	Total/NA
Ethylbenzene	1.6		1.0	0.40	ug/L	1	8260D	Total/NA
Toluene	0.65	J	1.0	0.20	ug/L	1	8260D	Total/NA
Xylenes, Total	1.2		1.0	0.40	ug/L	1	8260D	Total/NA
Acenaphthylene	4.2		0.051	0.010	ug/L	1	8270E SIM	Total/NA
Anthracene	1.6		0.051	0.010	ug/L	1	8270E SIM	Total/NA
Benzo[a]anthracene	0.72		0.051	0.010	ug/L	1	8270E SIM	Total/NA
Benzo[b]fluoranthene	0.011	J	0.051	0.010	ug/L	1	8270E SIM	Total/NA
Chrysene	0.40		0.051	0.010	ug/L	1	8270E SIM	Total/NA
Fluorene	9.7		0.051	0.010	ug/L	1	8270E SIM	Total/NA
Acenaphthene - DL	33		0.51	0.10	ug/L	10	8270E SIM	Total/NA
Fluoranthene - DL	14		0.51	0.10	ug/L	10	8270E SIM	Total/NA
Naphthalene - DL	84		0.71	0.30	ug/L	10	8270E SIM	Total/NA
Phenanthrene - DL	11		0.71	0.30	ug/L	10	8270E SIM	Total/NA
Pyrene - DL	18		0.51	0.10	ug/L	10	8270E SIM	Total/NA

Client Sample ID: Trip Blank-20220616

Lab Sample ID: 410-88035-15

No Detections.

This Detection Summary does not include radiochemical test results.

4

6

9

11

12

14

Client Sample ID: MW-1-20220614

Date Collected: 06/14/22 14:06 Date Received: 06/17/22 10:41 Lab Sample ID: 410-88035-1

Matrix: Ground Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.30	ug/L			06/26/22 20:16	1
Ethylbenzene	ND		1.0	0.40	ug/L			06/26/22 20:16	1
Toluene	ND		1.0	0.20	ug/L			06/26/22 20:16	1
Xylenes, Total	ND		1.0	0.40	ug/L			06/26/22 20:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		80 - 120					06/26/22 20:16	1
4-Bromofluorobenzene (Surr)	102		80 - 120					06/26/22 20:16	1
Dibromofluoromethane (Surr)	101		80 - 120					06/26/22 20:16	1
Toluene-d8 (Surr)	101		80 - 120					06/26/22 20:16	1

Analyte	Result Qualifi	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND ND	0.050	0.010	ug/L		06/21/22 09:44	06/22/22 12:54	1
Acenaphthylene	ND	0.050	0.010	ug/L		06/21/22 09:44	06/22/22 12:54	1
Anthracene	ND	0.050	0.010	ug/L		06/21/22 09:44	06/22/22 12:54	1
Benzo[a]anthracene	ND	0.050	0.010	ug/L		06/21/22 09:44	06/22/22 12:54	1
Benzo[a]pyrene	ND	0.050	0.010	ug/L		06/21/22 09:44	06/22/22 12:54	1
Benzo[b]fluoranthene	ND	0.050	0.010	ug/L		06/21/22 09:44	06/22/22 12:54	1
Benzo[g,h,i]perylene	ND	0.050	0.010	ug/L		06/21/22 09:44	06/22/22 12:54	1
Benzo[k]fluoranthene	ND	0.050	0.010	ug/L		06/21/22 09:44	06/22/22 12:54	1
Chrysene	ND	0.050	0.010	ug/L		06/21/22 09:44	06/22/22 12:54	1
Dibenz(a,h)anthracene	ND	0.050	0.020	ug/L		06/21/22 09:44	06/22/22 12:54	1
Fluoranthene	ND	0.050	0.010	ug/L		06/21/22 09:44	06/22/22 12:54	1
Fluorene	0.011 J	0.050	0.010	ug/L		06/21/22 09:44	06/22/22 12:54	1
Indeno[1,2,3-cd]pyrene	ND	0.050	0.020	ug/L		06/21/22 09:44	06/22/22 12:54	1
Naphthalene	ND	0.070	0.030	ug/L		06/21/22 09:44	06/22/22 12:54	1
Phenanthrene	ND	0.070	0.030	ug/L		06/21/22 09:44	06/22/22 12:54	1
Pyrene	ND	0.050	0.010	ug/L		06/21/22 09:44	06/22/22 12:54	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	54	10 - 110	06/21/22 09:44	06/22/22 12:54	1
1-Methylnaphthalene-d10 (Surr)	62	36 - 111	06/21/22 09:44	06/22/22 12:54	1
Fluoranthene-d10 (Surr)	77	47 - 128	06/21/22 09:44	06/22/22 12:54	1

Client Sample ID: MW-10S-20220614

Date Collected: 06/14/22 15:06 Date Received: 06/17/22 10:41

Toluene-d8 (Surr)

Lab Sample ID: 410-88035-2

Matrix: Ground Water

Analyte	Result Qu	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.30	ug/L			06/26/22 20:38	1
Ethylbenzene	ND		1.0	0.40	ug/L			06/26/22 20:38	1
Toluene	ND		1.0	0.20	ug/L			06/26/22 20:38	1
Xylenes, Total	ND		1.0	0.40	ug/L			06/26/22 20:38	1
Surrogate	%Recovery Qu	ualifier Lin	nits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	80	- 120					06/26/22 20:38	1
4-Bromofluorobenzene (Surr)	99	80	- 120					06/26/22 20:38	1
Dibromofluoromethane (Surr)	99	80.	- 120					06/26/22 20:38	1

Eurofins Lancaster Laboratories Environment Testing, LLC

80 - 120

100

06/26/22 20:38

Client: Brown and Caldwell Project/Site: Patchogue, NY

Client Sample ID: MW-10S-20220614

Date Collected: 06/14/22 15:06 Date Received: 06/17/22 10:41 Lab Sample ID: 410-88035-2

Matrix: Ground Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.050	0.010	ug/L		06/21/22 09:44	06/22/22 13:16	1
Acenaphthylene	ND		0.050	0.010	ug/L		06/21/22 09:44	06/22/22 13:16	1
Anthracene	ND		0.050	0.010	ug/L		06/21/22 09:44	06/22/22 13:16	1
Benzo[a]anthracene	ND		0.050	0.010	ug/L		06/21/22 09:44	06/22/22 13:16	1
Benzo[a]pyrene	ND		0.050	0.010	ug/L		06/21/22 09:44	06/22/22 13:16	1
Benzo[b]fluoranthene	ND		0.050	0.010	ug/L		06/21/22 09:44	06/22/22 13:16	1
Benzo[g,h,i]perylene	ND		0.050	0.010	ug/L		06/21/22 09:44	06/22/22 13:16	1
Benzo[k]fluoranthene	ND		0.050	0.010	ug/L		06/21/22 09:44	06/22/22 13:16	1
Chrysene	ND		0.050	0.010	ug/L		06/21/22 09:44	06/22/22 13:16	1
Dibenz(a,h)anthracene	ND		0.050	0.020	ug/L		06/21/22 09:44	06/22/22 13:16	1
Fluoranthene	ND		0.050	0.010	ug/L		06/21/22 09:44	06/22/22 13:16	1
Fluorene	ND		0.050	0.010	ug/L		06/21/22 09:44	06/22/22 13:16	1
Indeno[1,2,3-cd]pyrene	ND		0.050	0.020	ug/L		06/21/22 09:44	06/22/22 13:16	1
Naphthalene	ND		0.071	0.030	ug/L		06/21/22 09:44	06/22/22 13:16	1
Phenanthrene	ND		0.071	0.030	ug/L		06/21/22 09:44	06/22/22 13:16	1
Pyrene	0.010	J	0.050	0.010	ug/L		06/21/22 09:44	06/22/22 13:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	74		10 - 110				06/21/22 09:44	06/22/22 13:16	1
1-Methylnaphthalene-d10 (Surr)	73		36 - 111				06/21/22 09:44	06/22/22 13:16	1
Fluoranthene-d10 (Surr)	85		47 - 128				06/21/22 09:44	06/22/22 13:16	1

Client Sample ID: FB-20220614

Date Collected: 06/14/22 15:45 Date Received: 06/17/22 10:41 Lab Sample ID: 410-88035-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.30	ug/L			06/26/22 19:09	1
Ethylbenzene	ND		1.0	0.40	ug/L			06/26/22 19:09	1
Toluene	ND		1.0	0.20	ug/L			06/26/22 19:09	1
Xylenes, Total	ND		1.0	0.40	ug/L			06/26/22 19:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		80 - 120					06/26/22 19:09	1
4-Bromofluorobenzene (Surr)	102		80 - 120					06/26/22 19:09	1
Dibromofluoromethane (Surr)	101		80 - 120					06/26/22 19:09	1
Toluene-d8 (Surr)	102		80 - 120					06/26/22 19:09	

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND ND	0.051	0.010	ug/L		06/21/22 09:44	06/22/22 13:38	1
Acenaphthylene	ND	0.051	0.010	ug/L		06/21/22 09:44	06/22/22 13:38	1
Anthracene	ND	0.051	0.010	ug/L		06/21/22 09:44	06/22/22 13:38	1
Benzo[a]anthracene	ND	0.051	0.010	ug/L		06/21/22 09:44	06/22/22 13:38	1
Benzo[a]pyrene	ND	0.051	0.010	ug/L		06/21/22 09:44	06/22/22 13:38	1
Benzo[b]fluoranthene	ND	0.051	0.010	ug/L		06/21/22 09:44	06/22/22 13:38	1
Benzo[g,h,i]perylene	ND	0.051	0.010	ug/L		06/21/22 09:44	06/22/22 13:38	1
Benzo[k]fluoranthene	ND	0.051	0.010	ug/L		06/21/22 09:44	06/22/22 13:38	1
Chrysene	ND	0.051	0.010	ug/L		06/21/22 09:44	06/22/22 13:38	1
Dibenz(a,h)anthracene	ND	0.051	0.020	ug/L		06/21/22 09:44	06/22/22 13:38	1

Eurofins Lancaster Laboratories Environment Testing, LLC

3

4

6

8

10

12

14

Client Sample Results

Client: Brown and Caldwell Job ID: 410-88035-1

Project/Site: Patchogue, NY

Client Sample ID: FB-20220614

Lab Sample ID: 410-88035-3 Date Collected: 06/14/22 15:45

Matrix: Water Date Received: 06/17/22 10:41

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	ND ND	0.051	0.010	ug/L		06/21/22 09:44	06/22/22 13:38	1
Fluorene	ND	0.051	0.010	ug/L		06/21/22 09:44	06/22/22 13:38	1
Indeno[1,2,3-cd]pyrene	ND	0.051	0.020	ug/L		06/21/22 09:44	06/22/22 13:38	1
Naphthalene	ND	0.071	0.030	ug/L		06/21/22 09:44	06/22/22 13:38	1
Phenanthrene	ND	0.071	0.030	ug/L		06/21/22 09:44	06/22/22 13:38	1
Pyrene	ND	0.051	0.010	ug/L		06/21/22 09:44	06/22/22 13:38	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	85	10 - 110	06/21/22 09:44	06/22/22 13:38	1
1-Methylnaphthalene-d10 (Surr)	75	36 - 111	06/21/22 09:44	06/22/22 13:38	1
Fluoranthene-d10 (Surr)	87	47 - 128	06/21/22 09:44	06/22/22 13:38	1

Client Sample ID: MW-7S-20220615

Lab Sample ID: 410-88035-4 Date Collected: 06/15/22 09:02 **Matrix: Ground Water**

Date Received: 06/17/22 10:41

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.31	J cn J, RC:9	1.0	0.30	ug/L			06/26/22 21:00	1
Ethylbenzene	ND	cn R, RC:9	1.0	0.40	ug/L			06/26/22 21:00	1
Toluene	ND	cn R, RC:9	1.0	0.20	ug/L			06/26/22 21:00	1
Xylenes, Total	ND	cn R, RC:9	1.0	0.40	ug/L			06/26/22 21:00	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	cn	80 - 120		06/26/22 21:00	1
4-Bromofluorobenzene (Surr)	100	cn	80 - 120		06/26/22 21:00	1
Dibromofluoromethane (Surr)	101	cn	80 - 120		06/26/22 21:00	1
Toluene-d8 (Surr)	100	cn	80 - 120		06/26/22 21:00	1

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.16		0.051	0.010	ug/L		06/22/22 09:57	06/24/22 10:10	1
Acenaphthylene	0.037	J	0.051	0.010	ug/L		06/22/22 09:57	06/24/22 10:10	1
Anthracene	0.091		0.051	0.010	ug/L		06/22/22 09:57	06/24/22 10:10	1
Benzo[a]anthracene	0.075		0.051	0.010	ug/L		06/22/22 09:57	06/24/22 10:10	1
Benzo[a]pyrene	0.047	J	0.051	0.010	ug/L		06/22/22 09:57	06/24/22 10:10	1
Benzo[b]fluoranthene	0.059		0.051	0.010	ug/L		06/22/22 09:57	06/24/22 10:10	1
Benzo[g,h,i]perylene	0.037	J	0.051	0.010	ug/L		06/22/22 09:57	06/24/22 10:10	1
Benzo[k]fluoranthene	0.059		0.051	0.010	ug/L		06/22/22 09:57	06/24/22 10:10	1
Chrysene	0.062		0.051	0.010	ug/L		06/22/22 09:57	06/24/22 10:10	1
Dibenz(a,h)anthracene	0.050	J	0.051	0.020	ug/L		06/22/22 09:57	06/24/22 10:10	1
Fluoranthene	0.087		0.051	0.010	ug/L		06/22/22 09:57	06/24/22 10:10	1
Fluorene	0.13		0.051	0.010	ug/L		06/22/22 09:57	06/24/22 10:10	1
Indeno[1,2,3-cd]pyrene	0.046	J	0.051	0.020	ug/L		06/22/22 09:57	06/24/22 10:10	1
Naphthalene	0.15		0.071	0.030	ug/L		06/22/22 09:57	06/24/22 10:10	1
Phenanthrene	0.13		0.071	0.030	ug/L		06/22/22 09:57	06/24/22 10:10	1
Pyrene	0.092		0.051	0.010	ug/L		06/22/22 09:57	06/24/22 10:10	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	80		10 - 110	06/22/22 09:57 06/24/22 10:10	1
1-Methylnaphthalene-d10 (Surr)	78		36 - 111	06/22/22 09:57 06/24/22 10:10	1

Eurofins Lancaster Laboratories Environment Testing, LLC

Page 12 of 45

Client Sample ID: MW-7S-20220615

Date Collected: 06/15/22 09:02 Date Received: 06/17/22 10:41

Lab Sample ID: 410-88035-4

Matrix: Ground Water

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

%Recovery Qualifier Limits Dil Fac Prepared Analyzed Fluoranthene-d10 (Surr) 91 47 - 128 06/22/22 09:57 06/24/22 10:10

Client Sample ID: MW-14S-20220615

Lab Sample ID: 410-88035-5 Date Collected: 06/15/22 10:01 **Matrix: Ground Water**

Date Received: 06/17/22 10:41

Method: 8260D - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.30	ug/L			06/26/22 21:23	1
Ethylbenzene	ND		1.0	0.40	ug/L			06/26/22 21:23	1
Toluene	ND		1.0	0.20	ug/L			06/26/22 21:23	1
Xylenes, Total	ND		1.0	0.40	ug/L			06/26/22 21:23	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		80 - 120		06/26/22 21:23	1
4-Bromofluorobenzene (Surr)	99		80 - 120		06/26/22 21:23	1
Dibromofluoromethane (Surr)	102		80 - 120		06/26/22 21:23	1
Toluene-d8 (Surr)	100		80 - 120		06/26/22 21:23	1

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.61		0.050	0.010	ug/L		06/22/22 09:57	06/24/22 09:05	1
Acenaphthylene	0.021	J	0.050	0.010	ug/L		06/22/22 09:57	06/24/22 09:05	1
Anthracene	0.026	J	0.050	0.010	ug/L		06/22/22 09:57	06/24/22 09:05	1
Benzo[a]anthracene	0.013	J	0.050	0.010	ug/L		06/22/22 09:57	06/24/22 09:05	1
Benzo[a]pyrene	0.013	J	0.050	0.010	ug/L		06/22/22 09:57	06/24/22 09:05	1
Benzo[b]fluoranthene	0.012	J	0.050	0.010	ug/L		06/22/22 09:57	06/24/22 09:05	1
Benzo[g,h,i]perylene	ND		0.050	0.010	ug/L		06/22/22 09:57	06/24/22 09:05	1
Benzo[k]fluoranthene	ND		0.050	0.010	ug/L		06/22/22 09:57	06/24/22 09:05	1
Chrysene	0.015	J	0.050	0.010	ug/L		06/22/22 09:57	06/24/22 09:05	1
Dibenz(a,h)anthracene	ND		0.050	0.020	ug/L		06/22/22 09:57	06/24/22 09:05	1
Fluoranthene	0.027	J	0.050	0.010	ug/L		06/22/22 09:57	06/24/22 09:05	1
Fluorene	0.12		0.050	0.010	ug/L		06/22/22 09:57	06/24/22 09:05	1
Indeno[1,2,3-cd]pyrene	ND		0.050	0.020	ug/L		06/22/22 09:57	06/24/22 09:05	1
Naphthalene	0.30		0.071	0.030	ug/L		06/22/22 09:57	06/24/22 09:05	1
Phenanthrene	0.10		0.071	0.030	ug/L		06/22/22 09:57	06/24/22 09:05	1
Pyrene	0.034	J	0.050	0.010	ug/L		06/22/22 09:57	06/24/22 09:05	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	77	10 - 110	06/22/22 09:57	06/24/22 09:05	1
1-Methylnaphthalene-d10 (Surr)	81	36 - 111	06/22/22 09:57	06/24/22 09:05	1
Fluoranthene-d10 (Surr)	96	47 - 128	06/22/22 09:57	06/24/22 09:05	1

Client Sample ID: MW-12S-20220615

Date Collected: 06/15/22 11:26

Lab Sample ID: 410-88035-6 **Matrix: Ground Water** Date Received: 06/17/22 10:41

Method: 8260D - Volatile Organic Compounds by GC/MS

Welliou. 0200D - Volatile	organic compounds by con	IVIO				
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Benzene	ND ND	1.0	0.30 ug/L		06/28/22 00:19	1
Ethylbenzene	ND	1.0	0.40 ug/L		06/28/22 00:19	1

Eurofins Lancaster Laboratories Environment Testing, LLC

Page 13 of 45

Client: Brown and Caldwell Project/Site: Patchogue, NY

Client Sample ID: MW-12S-20220615

Date Collected: 06/15/22 11:26 Date Received: 06/17/22 10:41 Lab Sample ID: 410-88035-6

Matrix: Ground Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	ND		1.0	0.20	ug/L			06/28/22 00:19	1
Xylenes, Total	ND		1.0	0.40	ug/L			06/28/22 00:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		80 - 120			-		06/28/22 00:19	1
4-Bromofluorobenzene (Surr)	105		80 - 120					06/28/22 00:19	1
Dibromofluoromethane (Surr)	96		80 - 120					06/28/22 00:19	1

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.048 J	J -	0.050	0.010	ug/L		06/22/22 09:57	06/24/22 10:31	1
Acenaphthylene	ND		0.050	0.010	ug/L		06/22/22 09:57	06/24/22 10:31	1
Anthracene	0.011 J	J	0.050	0.010	ug/L		06/22/22 09:57	06/24/22 10:31	1
Benzo[a]anthracene	0.014 J	J	0.050	0.010	ug/L		06/22/22 09:57	06/24/22 10:31	1
Benzo[a]pyrene	ND		0.050	0.010	ug/L		06/22/22 09:57	06/24/22 10:31	1
Benzo[b]fluoranthene	0.014 J	J	0.050	0.010	ug/L		06/22/22 09:57	06/24/22 10:31	1
Benzo[g,h,i]perylene	ND		0.050	0.010	ug/L		06/22/22 09:57	06/24/22 10:31	1
Benzo[k]fluoranthene	0.011 J	J	0.050	0.010	ug/L		06/22/22 09:57	06/24/22 10:31	1
Chrysene	0.013 J	J	0.050	0.010	ug/L		06/22/22 09:57	06/24/22 10:31	1
Dibenz(a,h)anthracene	ND		0.050	0.020	ug/L		06/22/22 09:57	06/24/22 10:31	1
Fluoranthene	0.020 J	J	0.050	0.010	ug/L		06/22/22 09:57	06/24/22 10:31	1
Fluorene	0.017 J	J	0.050	0.010	ug/L		06/22/22 09:57	06/24/22 10:31	1
Indeno[1,2,3-cd]pyrene	ND		0.050	0.020	ug/L		06/22/22 09:57	06/24/22 10:31	1
Naphthalene	ND		0.071	0.030	ug/L		06/22/22 09:57	06/24/22 10:31	1
Phenanthrene	ND		0.071	0.030	ug/L		06/22/22 09:57	06/24/22 10:31	1
Pyrene	0.037 J	J	0.050	0.010	ug/L		06/22/22 09:57	06/24/22 10:31	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	58		10 - 110	06/22/22 09:57	06/24/22 10:31	1
1-Methylnaphthalene-d10 (Surr)	73		36 - 111	06/22/22 09:57	06/24/22 10:31	1
Fluoranthene-d10 (Surr)	86		47 - 128	06/22/22 09:57	06/24/22 10:31	1

Client Sample ID: MW-12D-20220615

Date Collected: 06/15/22 12:06 Date Received: 06/17/22 10:41 Lab Sample ID: 410-88035-7

Matrix: Ground Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.30	ug/L			06/28/22 00:44	1
Ethylbenzene	ND		1.0	0.40	ug/L			06/28/22 00:44	1
Toluene	ND		1.0	0.20	ug/L			06/28/22 00:44	1
Xylenes, Total	ND		1.0	0.40	ug/L			06/28/22 00:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		80 - 120					06/28/22 00:44	1
4-Bromofluorobenzene (Surr)	104		80 - 120					06/28/22 00:44	1
Dibromofluoromethane (Surr)	95		80 - 120					06/28/22 00:44	1
Toluene-d8 (Surr)	104		80 - 120					06/28/22 00:44	

Eurofins Lancaster Laboratories Environment Testing, LLC

2

4

6

<u>.</u>

11

13

Client: Brown and Caldwell Project/Site: Patchogue, NY

Client Sample ID: MW-12D-20220615

Date Collected: 06/15/22 12:06 Date Received: 06/17/22 10:41

Lab Sample ID: 410-88035-7

Matrix: Ground Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.015	J	0.051	0.010	ug/L		06/22/22 09:57	06/24/22 10:53	1
Acenaphthylene	ND		0.051	0.010	ug/L		06/22/22 09:57	06/24/22 10:53	1
Anthracene	0.018	J	0.051	0.010	ug/L		06/22/22 09:57	06/24/22 10:53	1
Benzo[a]anthracene	0.016	J	0.051	0.010	ug/L		06/22/22 09:57	06/24/22 10:53	1
Benzo[a]pyrene	0.011	J	0.051	0.010	ug/L		06/22/22 09:57	06/24/22 10:53	1
Benzo[b]fluoranthene	0.016	J	0.051	0.010	ug/L		06/22/22 09:57	06/24/22 10:53	1
Benzo[g,h,i]perylene	ND		0.051	0.010	ug/L		06/22/22 09:57	06/24/22 10:53	1
Benzo[k]fluoranthene	ND		0.051	0.010	ug/L		06/22/22 09:57	06/24/22 10:53	1
Chrysene	0.017	J	0.051	0.010	ug/L		06/22/22 09:57	06/24/22 10:53	1
Dibenz(a,h)anthracene	ND		0.051	0.020	ug/L		06/22/22 09:57	06/24/22 10:53	1
Fluoranthene	0.041	J	0.051	0.010	ug/L		06/22/22 09:57	06/24/22 10:53	1
Fluorene	0.028	J	0.051	0.010	ug/L		06/22/22 09:57	06/24/22 10:53	1
Indeno[1,2,3-cd]pyrene	ND		0.051	0.020	ug/L		06/22/22 09:57	06/24/22 10:53	1
Naphthalene	ND		0.071	0.030	ug/L		06/22/22 09:57	06/24/22 10:53	1
Phenanthrene	0.075		0.071	0.030	ug/L		06/22/22 09:57	06/24/22 10:53	1
Pyrene	0.044	J	0.051	0.010	ug/L		06/22/22 09:57	06/24/22 10:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	66		10 - 110				06/22/22 09:57	06/24/22 10:53	1
1-Methylnaphthalene-d10 (Surr)	74		36 - 111				06/22/22 09:57	06/24/22 10:53	1
Fluoranthene-d10 (Surr)	87		47 - 128				06/22/22 09:57	06/24/22 10:53	1

Client Sample ID: MW-8S-20220615

Date Collected: 06/15/22 14:19 Date Received: 06/17/22 10:41

Lab Sample ID: 410-88035-8

Matrix: Ground Water

Method: 8260D - Volatile O	rganic Compo	unds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.30	ug/L			06/28/22 01:10	1
Ethylbenzene	ND		1.0	0.40	ug/L			06/28/22 01:10	1
Toluene	ND		1.0	0.20	ug/L			06/28/22 01:10	1
Xylenes, Total	ND		1.0	0.40	ug/L			06/28/22 01:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		80 - 120					06/28/22 01:10	1
4-Bromofluorobenzene (Surr)	103		80 - 120					06/28/22 01:10	1
Dibromofluoromethane (Surr)	97		80 - 120					06/28/22 01:10	1
Toluene-d8 (Surr)	103		80 - 120					06/28/22 01:10	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.16		0.051	0.010	ug/L		06/22/22 09:57	06/24/22 11:15	1
Acenaphthylene	ND		0.051	0.010	ug/L		06/22/22 09:57	06/24/22 11:15	1
Anthracene	ND		0.051	0.010	ug/L		06/22/22 09:57	06/24/22 11:15	1
Benzo[a]anthracene	0.035	J	0.051	0.010	ug/L		06/22/22 09:57	06/24/22 11:15	1
Benzo[a]pyrene	0.026	J	0.051	0.010	ug/L		06/22/22 09:57	06/24/22 11:15	1
Benzo[b]fluoranthene	0.046	J	0.051	0.010	ug/L		06/22/22 09:57	06/24/22 11:15	1
Benzo[g,h,i]perylene	0.025	J	0.051	0.010	ug/L		06/22/22 09:57	06/24/22 11:15	1
Benzo[k]fluoranthene	0.017	J	0.051	0.010	ug/L		06/22/22 09:57	06/24/22 11:15	1
Chrysene	0.042	J	0.051	0.010	ug/L		06/22/22 09:57	06/24/22 11:15	1
Dibenz(a,h)anthracene	ND		0.051	0.020	ug/L		06/22/22 09:57	06/24/22 11:15	1

Client: Brown and Caldwell Project/Site: Patchogue, NY

Client Sample ID: MW-8S-20220615

Lab Sample ID: 410-88035-8 Date Collected: 06/15/22 14:19 **Matrix: Ground Water**

Date Received: 06/17/22 10:41

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	0.068		0.051	0.010	ug/L		06/22/22 09:57	06/24/22 11:15	1
Fluorene	ND		0.051	0.010	ug/L		06/22/22 09:57	06/24/22 11:15	1
Indeno[1,2,3-cd]pyrene	0.025	J	0.051	0.020	ug/L		06/22/22 09:57	06/24/22 11:15	1
Naphthalene	ND		0.071	0.030	ug/L		06/22/22 09:57	06/24/22 11:15	1
Phenanthrene	0.088		0.071	0.030	ug/L		06/22/22 09:57	06/24/22 11:15	1
Pyrene	0.079		0.051	0.010	ug/L		06/22/22 09:57	06/24/22 11:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	74		10 - 110				06/22/22 09:57	06/24/22 11:15	1
1-Methylnaphthalene-d10 (Surr)	74		36 - 111				06/22/22 09:57	06/24/22 11:15	1
Fluoranthene-d10 (Surr)	87		47 - 128				06/22/22 09:57	06/24/22 11:15	1

Client Sample ID: MW-11S-20220615 Lab Sample ID: 410-88035-9

Date Collected: 06/15/22 15:06 **Matrix: Ground Water**

Date Received: 06/17/22 10:41

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.90	J	1.0	0.30	ug/L			06/28/22 01:36	1
Ethylbenzene	ND		1.0	0.40	ug/L			06/28/22 01:36	1
Toluene	ND		1.0	0.20	ug/L			06/28/22 01:36	1
Xylenes, Total	0.89	J	1.0	0.40	ug/L			06/28/22 01:36	1

Surrogate	%Recovery Qual	lifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94	80 - 120		06/28/22 01:36	1
4-Bromofluorobenzene (Surr)	105	80 - 120		06/28/22 01:36	1
Dibromofluoromethane (Surr)	94	80 - 120		06/28/22 01:36	1
Toluene-d8 (Surr)	103	80 - 120		06/28/22 01:36	1

Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	0.94		0.051	0.010	ug/L		06/22/22 09:57	06/24/22 11:36	1
Anthracene	2.6		0.051	0.010	ug/L		06/22/22 09:57	06/24/22 11:36	1
Benzo[a]anthracene	1.5		0.051	0.010	ug/L		06/22/22 09:57	06/24/22 11:36	1
Benzo[a]pyrene	0.56		0.051	0.010	ug/L		06/22/22 09:57	06/24/22 11:36	1
Benzo[b]fluoranthene	1.1		0.051	0.010	ug/L		06/22/22 09:57	06/24/22 11:36	1
Benzo[g,h,i]perylene	0.55		0.051	0.010	ug/L		06/22/22 09:57	06/24/22 11:36	1
Benzo[k]fluoranthene	0.36		0.051	0.010	ug/L		06/22/22 09:57	06/24/22 11:36	1
Chrysene	1.6		0.051	0.010	ug/L		06/22/22 09:57	06/24/22 11:36	1
Dibenz(a,h)anthracene	0.10		0.051	0.020	ug/L		06/22/22 09:57	06/24/22 11:36	1
Fluoranthene	7.5		0.051	0.010	ug/L		06/22/22 09:57	06/24/22 11:36	1
Fluorene	3.5		0.051	0.010	ug/L		06/22/22 09:57	06/24/22 11:36	1
Indeno[1,2,3-cd]pyrene	0.51		0.051	0.020	ug/L		06/22/22 09:57	06/24/22 11:36	1
Naphthalene	3.4		0.071	0.030	ug/L		06/22/22 09:57	06/24/22 11:36	1
Phenanthrene	1.9		0.071	0.030	ug/L		06/22/22 09:57	06/24/22 11:36	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Anaiyzea	DII Fac
Benzo(a)pyrene-d12 (Surr)	82		10 - 110	06/22/22 09:57	06/24/22 11:36	1
1-Methylnaphthalene-d10 (Surr)	77		36 - 111	06/22/22 09:57	06/24/22 11:36	1
Fluoranthene-d10 (Surr)	92		47 - 128	06/22/22 09:57	06/24/22 11:36	1

Client: Brown and Caldwell Project/Site: Patchogue, NY

Client Sample ID: MW-11S-20220615

Date Collected: 06/15/22 15:06 Date Received: 06/17/22 10:41

Lab Sample ID: 410-88035-9

Matrix: Ground Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	49		0.51	0.10	ug/L		06/22/22 09:57	06/24/22 11:58	10
Pyrene	12		0.51	0.10	ug/L		06/22/22 09:57	06/24/22 11:58	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	86		10 - 110				06/22/22 09:57	06/24/22 11:58	10
1-Methylnaphthalene-d10 (Surr)	80		36 - 111				06/22/22 09:57	06/24/22 11:58	10
Fluoranthene-d10 (Surr)	94		47 - 128				06/22/22 00:57	06/24/22 11:58	10

Client Sample ID: MW-4S-20220616 Lab Sample ID: 410-88035-10

Date Collected: 06/16/22 08:09

Matrix: Ground Water

Date Received: 06/17/22 10:41

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.30	ug/L			06/28/22 02:02	1
Ethylbenzene	ND		1.0	0.40	ug/L			06/28/22 02:02	1
Toluene	ND		1.0	0.20	ug/L			06/28/22 02:02	1
Xylenes, Total	ND		1.0	0.40	ug/L			06/28/22 02:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		80 - 120					06/28/22 02:02	1
4-Bromofluorobenzene (Surr)	104		80 - 120					06/28/22 02:02	1
Dibromofluoromethane (Surr)	93		80 - 120					06/28/22 02:02	1
Toluene-d8 (Surr)	105		80 - 120					06/28/22 02:02	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	ND		0.050	0.010	ug/L		06/23/22 09:00	06/26/22 22:26	1
Anthracene	0.23		0.050	0.010	ug/L		06/23/22 09:00	06/26/22 22:26	1
Benzo[a]anthracene	0.019	J	0.050	0.010	ug/L		06/23/22 09:00	06/26/22 22:26	1
Benzo[a]pyrene	0.014	J	0.050	0.010	ug/L		06/23/22 09:00	06/26/22 22:26	1
Benzo[b]fluoranthene	0.029	J	0.050	0.010	ug/L		06/23/22 09:00	06/26/22 22:26	1
Benzo[g,h,i]perylene	0.012	J	0.050	0.010	ug/L		06/23/22 09:00	06/26/22 22:26	1
Benzo[k]fluoranthene	0.012	J	0.050	0.010	ug/L		06/23/22 09:00	06/26/22 22:26	1
Chrysene	0.015	J	0.050	0.010	ug/L		06/23/22 09:00	06/26/22 22:26	1
Dibenz(a,h)anthracene	ND		0.050	0.020	ug/L		06/23/22 09:00	06/26/22 22:26	1
Fluoranthene	4.1		0.050	0.010	ug/L		06/23/22 09:00	06/26/22 22:26	1
Fluorene	8.4		0.050	0.010	ug/L		06/23/22 09:00	06/26/22 22:26	1
Indeno[1,2,3-cd]pyrene	ND		0.050	0.020	ug/L		06/23/22 09:00	06/26/22 22:26	1
Naphthalene	ND		0.071	0.030	ug/L		06/23/22 09:00	06/26/22 22:26	1
Phenanthrene	0.10		0.071	0.030	ug/L		06/23/22 09:00	06/26/22 22:26	1
Pyrene	5.8		0.050	0.010	ug/L		06/23/22 09:00	06/26/22 22:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	73		10 - 110				06/23/22 09:00	06/26/22 22:26	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	73	10 - 110	06/23/22 09:00	06/26/22 22:26	1
1-Methylnaphthalene-d10 (Surr)	75	36 - 111	06/23/22 09:00	06/26/22 22:26	1
Fluoranthene-d10 (Surr)	85	47 - 128	06/23/22 09:00	06/26/22 22:26	1

Method: 8270E SIM - Semivol	atile Organic Cor	mpounds (GC/MS	S SIM) - D	L				
Analyte	Result Quali	ifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	30	0.50	0.10	ug/L		06/23/22 09:00	06/26/22 22:48	10

Client: Brown and Caldwell Project/Site: Patchogue, NY

Client Sample ID: MW-4S-20220616

Date Collected: 06/16/22 08:09 Date Received: 06/17/22 10:41 Lab Sample ID: 410-88035-10

Matrix: Ground Water

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	72	10 - 110	06/23/22 09:00	06/26/22 22:48	10
1-Methylnaphthalene-d10 (Surr)	79	36 - 111	06/23/22 09:00	06/26/22 22:48	10
Fluoranthene-d10 (Surr)	95	47 - 128	06/23/22 09:00	06/26/22 22:48	10

Client Sample ID: MW-3-20220616

Date Collected: 06/16/22 08:51 Date Received: 06/17/22 10:41 Lab Sample ID: 410-88035-11

Matrix: Ground Water

Method: 8260D - Volatile O	rganic Compo	unds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.62	J	1.0	0.30	ug/L			06/28/22 02:28	1
Ethylbenzene	2.1	J, RC:8	1.0	0.40	ug/L			06/28/22 02:28	1
Toluene	0.73	J	1.0	0.20	ug/L			06/28/22 02:28	1
Xylenes, Total	1.8		1.0	0.40	ug/L			06/28/22 02:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		80 - 120			-		06/28/22 02:28	1
4-Bromofluorobenzene (Surr)	103		80 - 120					06/28/22 02:28	1
Dibromofluoromethane (Surr)	93		80 - 120					06/28/22 02:28	1
Toluene-d8 (Surr)	103		80 - 120					06/28/22 02:28	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.71	cn J, RC:3L,8	0.050	0.010	ug/L		06/23/22 15:50	06/24/22 17:46	1
Acenaphthylene	0.14	cn J, RC:3L,8	0.050	0.010	ug/L		06/23/22 15:50	06/24/22 17:46	1
Anthracene	0.35	cn J, RC:3L,8	0.050	0.010	ug/L		06/23/22 15:50	06/24/22 17:46	1
Benzo[a]anthracene	0.27	cn J, RC:3L,8	0.050	0.010	ug/L		06/23/22 15:50	06/24/22 17:46	1
Benzo[a]pyrene	ND	cn	0.050	0.010	ug/L		06/23/22 15:50	06/24/22 17:46	1
Benzo[b]fluoranthene	ND	cn	0.050	0.010	ug/L		06/23/22 15:50	06/24/22 17:46	1
Benzo[g,h,i]perylene	ND	cn	0.050	0.010	ug/L		06/23/22 15:50	06/24/22 17:46	1
Benzo[k]fluoranthene	ND	cn	0.050	0.010	ug/L		06/23/22 15:50	06/24/22 17:46	1
Chrysene	0.14	cn J, RC:3L,8	0.050	0.010	ug/L		06/23/22 15:50	06/24/22 17:46	1
Dibenz(a,h)anthracene	ND	cn	0.050	0.020	ug/L		06/23/22 15:50	06/24/22 17:46	1
Fluoranthene	3.3	cn J, RC:3L,8	0.050	0.010	ug/L		06/23/22 15:50	06/24/22 17:46	1
Fluorene	0.63	cn J, RC:3L,8	0.050	0.010	ug/L		06/23/22 15:50	06/24/22 17:46	1
Indeno[1,2,3-cd]pyrene	ND	cn	0.050	0.020	ug/L		06/23/22 15:50	06/24/22 17:46	1
Naphthalene	0.14	cn J, RC:3L,8	0.070	0.030	ug/L		06/23/22 15:50	06/24/22 17:46	1
Phenanthrene	1.8	cn J, RC:3L,8	0.070	0.030	ug/L		06/23/22 15:50	06/24/22 17:46	1
Pyrene	3.7	cn J, RC:3L,8	0.050	0.010	ug/L		06/23/22 15:50	06/24/22 17:46	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	36	cn	10 - 110	06/23/22 15:50	06/24/22 17:46	1
1-Methylnaphthalene-d10 (Surr)	0.5	S1- cn	36 - 111	06/23/22 15:50	06/24/22 17:46	1
Fluoranthene-d10 (Surr)	28	S1- cn	47 - 128	06/23/22 15:50	06/24/22 17:46	1

Client Sample ID: MW-13S-20220616

Date Collected: 06/16/22 09:40 Date Received: 06/17/22 10:41 Lab Sample ID: 410-88035-12

Matrix: Ground Water

Method: 8260D - Volatile Organic Compounds by GC/MS

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa

Benzene 1.3 1.0 0.30 ug/L D Prepared 06/27/22 23:37

Client: Brown and Caldwell Project/Site: Patchogue, NY

Lab Sample ID: 410-88035-12

Job ID: 410-88035-1

Client Sample ID: MW-13S-20220616

Matrix: Ground Water

Date Collected: 06/16/22 09:40 Date Received: 06/17/22 10:41

Method: 8260D - Volatile O	rganic Compo	unds by G	C/MS (Contir	nued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	0.91	J	1.0	0.40	ug/L			06/27/22 23:37	1
Toluene	0.52	J	1.0	0.20	ug/L			06/27/22 23:37	1
Xylenes, Total	1.0		1.0	0.40	ug/L			06/27/22 23:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	114		80 - 120					06/27/22 23:37	1
4-Bromofluorobenzene (Surr)	88		80 - 120					06/27/22 23:37	1
Dibromofluoromethane (Surr)	117		80 - 120					06/27/22 23:37	1
Toluene-d8 (Surr)	94		80 - 120					06/27/22 23:37	1

Analyte	Result Qua	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	0.72	0.050	0.010	ug/L		06/23/22 15:50	06/24/22 18:08	1
Anthracene	1.7	0.050	0.010	ug/L		06/23/22 15:50	06/24/22 18:08	1
Benzo[a]anthracene	0.27	0.050	0.010	ug/L		06/23/22 15:50	06/24/22 18:08	1
Benzo[a]pyrene	0.013 J	0.050	0.010	ug/L		06/23/22 15:50	06/24/22 18:08	1
Benzo[b]fluoranthene	0.020 J	0.050	0.010	ug/L		06/23/22 15:50	06/24/22 18:08	1
Benzo[g,h,i]perylene	ND	0.050	0.010	ug/L		06/23/22 15:50	06/24/22 18:08	1
Benzo[k]fluoranthene	ND	0.050	0.010	ug/L		06/23/22 15:50	06/24/22 18:08	1
Chrysene	0.18	0.050	0.010	ug/L		06/23/22 15:50	06/24/22 18:08	1
Dibenz(a,h)anthracene	ND	0.050	0.020	ug/L		06/23/22 15:50	06/24/22 18:08	1
Fluoranthene	2.1	0.050	0.010	ug/L		06/23/22 15:50	06/24/22 18:08	1
Fluorene	3.5	0.050	0.010	ug/L		06/23/22 15:50	06/24/22 18:08	1
Indeno[1,2,3-cd]pyrene	ND	0.050	0.020	ug/L		06/23/22 15:50	06/24/22 18:08	1
Phenanthrene	3.5	0.070	0.030	ug/L		06/23/22 15:50	06/24/22 18:08	1
Pyrene	2.2	0.050	0.010	ug/L		06/23/22 15:50	06/24/22 18:08	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	71		10 - 110	06/23/22 15:50	06/24/22 18:08	1
1-Methylnaphthalene-d10 (Surr)	62		36 - 111	06/23/22 15:50	06/24/22 18:08	1
Fluoranthene-d10 (Surr)	75		47 - 128	06/23/22 15:50	06/24/22 18:08	1

Method: 8270E SIM - Semiv	olatile Organi	c Compou	nds (GC/MS	SIM) - D	L				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	18		0.25	0.050	ug/L		06/23/22 15:50	06/26/22 19:33	5
Naphthalene	36		0.35	0.15	ug/L		06/23/22 15:50	06/26/22 19:33	5
S	0/ 🗖	O !!#!	,					A a l a al	D:/ F
Surrogate	%Recovery	Qualitier	Limits				Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)		Qualifier	10 - 110					06/26/22 19:33	Dii Fac 5
		Quaimer					06/23/22 15:50		5 5

Lab Sample ID: 410-88035-13 Client Sample ID: MW-13D-20220616 Date Collected: 06/16/22 10:24 **Matrix: Ground Water**

Date Received: 06/17/22 10:41

Method: 8260D - Volatile	Organic Compou	inds by GC/	MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.30	ug/L			06/27/22 23:59	1
Ethylbenzene	ND		1.0	0.40	ug/L			06/27/22 23:59	1
Toluene	ND		1.0	0.20	ug/L			06/27/22 23:59	1

Eurofins Lancaster Laboratories Environment Testing, LLC

Page 19 of 45

Client: Brown and Caldwell Project/Site: Patchogue, NY

Client Sample ID: MW-13D-20220616

Lab Sample ID: 410-88035-13 Date Collected: 06/16/22 10:24 **Matrix: Ground Water**

Date Received: 06/17/22 10:41

Mothod: 8260D	- Volatilo Organi	c Compounds by	CC/MS	(Continued)
Method: 8260D	- voiatile Organi	c Compounds b	y GC/IVIS ((Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	ND		1.0	0.40	ug/L			06/27/22 23:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			80 - 120					06/27/22 23:59	1
4-Bromofluorobenzene (Surr)	85		80 - 120					06/27/22 23:59	1
Dibromofluoromethane (Surr)	117		80 - 120					06/27/22 23:59	1
Toluene-d8 (Surr)	95		80 - 120					06/27/22 23:59	1

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.050	0.010	ug/L		06/23/22 15:50	06/24/22 18:30	1
Acenaphthylene	ND		0.050	0.010	ug/L		06/23/22 15:50	06/24/22 18:30	1
Anthracene	ND		0.050	0.010	ug/L		06/23/22 15:50	06/24/22 18:30	1
Benzo[a]anthracene	ND		0.050	0.010	ug/L		06/23/22 15:50	06/24/22 18:30	1
Benzo[a]pyrene	ND		0.050	0.010	ug/L		06/23/22 15:50	06/24/22 18:30	1
Benzo[b]fluoranthene	ND		0.050	0.010	ug/L		06/23/22 15:50	06/24/22 18:30	1
Benzo[g,h,i]perylene	ND		0.050	0.010	ug/L		06/23/22 15:50	06/24/22 18:30	1
Benzo[k]fluoranthene	ND		0.050	0.010	ug/L		06/23/22 15:50	06/24/22 18:30	1
Chrysene	ND		0.050	0.010	ug/L		06/23/22 15:50	06/24/22 18:30	1
Dibenz(a,h)anthracene	ND		0.050	0.020	ug/L		06/23/22 15:50	06/24/22 18:30	1
Fluoranthene	0.011	J	0.050	0.010	ug/L		06/23/22 15:50	06/24/22 18:30	1
Fluorene	ND		0.050	0.010	ug/L		06/23/22 15:50	06/24/22 18:30	1
Indeno[1,2,3-cd]pyrene	ND		0.050	0.020	ug/L		06/23/22 15:50	06/24/22 18:30	1
Naphthalene	ND		0.071	0.030	ug/L		06/23/22 15:50	06/24/22 18:30	1
Phenanthrene	ND		0.071	0.030	ug/L		06/23/22 15:50	06/24/22 18:30	1
Pyrene	0.013	J	0.050	0.010	ug/L		06/23/22 15:50	06/24/22 18:30	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	71		10 - 110	06/23/22 15:50	06/24/22 18:30	1
1-Methylnaphthalene-d10 (Surr)	67		36 - 111	06/23/22 15:50	06/24/22 18:30	1
Fluoranthene-d10 (Surr)	85		47 - 128	06/23/22 15:50	06/24/22 18:30	1

Client Sample ID: DUP-20220616

Date Collected: 06/16/22 00:00 Date Received: 06/17/22 10:41

Method: 8260D - Volatile Organi	c Compo	unds by GC/	MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.55	J	1.0	0.30	ug/L			06/28/22 00:21	1
Ethylbenzene	1.6	J, RC:8	1.0	0.40	ug/L			06/28/22 00:21	1
Toluene	0.65	J	1.0	0.20	ug/L			06/28/22 00:21	1
Xylenes, Total	1.2		1.0	0.40	ug/L			06/28/22 00:21	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111		80 - 120		06/28/22 00:21	1
4-Bromofluorobenzene (Surr)	91		80 - 120		06/28/22 00:21	1
Dibromofluoromethane (Surr)	118		80 - 120		06/28/22 00:21	1
Toluene-d8 (Surr)	96		80 - 120		06/28/22 00:21	1

Eurofins Lancaster Laboratories Environment Testing, LLC

Lab Sample ID: 410-88035-14

Matrix: Ground Water

Client: Brown and Caldwell Project/Site: Patchogue, NY

Client Sample ID: DUP-20220616

Date Collected: 06/16/22 00:00 Date Received: 06/17/22 10:41

Lab Sample ID: 410-88035-14

Matrix: Ground Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	4.2	J, RC:8	0.051	0.010	ug/L		06/23/22 15:50	06/26/22 19:55	1
Anthracene	1.6	J, RC:8	0.051	0.010	ug/L		06/23/22 15:50	06/26/22 19:55	1
Benzo[a]anthracene	0.72	J, RC:8	0.051	0.010	ug/L		06/23/22 15:50	06/26/22 19:55	1
Benzo[a]pyrene	ND		0.051	0.010	ug/L		06/23/22 15:50	06/26/22 19:55	1
Benzo[b]fluoranthene	0.011	J	0.051	0.010	ug/L		06/23/22 15:50	06/26/22 19:55	1
Benzo[g,h,i]perylene	ND		0.051	0.010	ug/L		06/23/22 15:50	06/26/22 19:55	1
Benzo[k]fluoranthene	ND		0.051	0.010	ug/L		06/23/22 15:50	06/26/22 19:55	1
Chrysene	0.40	J, RC:8	0.051	0.010	ug/L		06/23/22 15:50	06/26/22 19:55	1
Dibenz(a,h)anthracene	ND		0.051	0.020	ug/L		06/23/22 15:50	06/26/22 19:55	1
Fluorene	9.7	J, RC:8	0.051	0.010	ug/L		06/23/22 15:50	06/26/22 19:55	1
Indeno[1,2,3-cd]pyrene	ND		0.051	0.020	ug/L		06/23/22 15:50	06/26/22 19:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	79		10 - 110				06/23/22 15:50	06/26/22 19:55	1
1-Methylnaphthalene-d10 (Surr)	74		36 - 111				06/23/22 15:50	06/26/22 19:55	1
Fluoranthene-d10 (Surr)	100		47 - 128				06/23/22 15:50	06/26/22 19:55	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	33	J, RC:8	0.51	0.10	ug/L		06/23/22 15:50	06/26/22 20:16	10
Fluoranthene	14	J, RC:8	0.51	0.10	ug/L		06/23/22 15:50	06/26/22 20:16	10
Naphthalene	84	J, RC:8	0.71	0.30	ug/L		06/23/22 15:50	06/26/22 20:16	10
Phenanthrene	11	J, RC:8	0.71	0.30	ug/L		06/23/22 15:50	06/26/22 20:16	10
Pyrene	18	J, RC:8	0.51	0.10	ug/L		06/23/22 15:50	06/26/22 20:16	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	78		10 - 110				06/23/22 15:50	06/26/22 20:16	10
1-Methylnaphthalene-d10 (Surr)	99		36 - 111				06/23/22 15:50	06/26/22 20:16	10
Fluoranthene-d10 (Surr)	98		47 - 128				00/00/00 45.50	06/26/22 20:16	10

Client Sample ID: Trip Blank-20220616	Lab Sample ID: 410-88035-15
Date Collected: 06/16/22 00:00	Matrix: Water

Date Received: 06/17/22 10:41

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.30	ug/L			06/27/22 21:47	1
Ethylbenzene	ND		1.0	0.40	ug/L			06/27/22 21:47	1
Toluene	ND		1.0	0.20	ug/L			06/27/22 21:47	1
Xylenes, Total	ND		1.0	0.40	ug/L			06/27/22 21:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		80 - 120					06/27/22 21:47	1
4-Bromofluorobenzene (Surr)	86		80 - 120					06/27/22 21:47	1
Dibromofluoromethane (Surr)	115		80 - 120					06/27/22 21:47	1
Toluene-d8 (Surr)	95		80 - 120					06/27/22 21:47	1

Eurofins Lancaster Laboratories Environment Testing, LLC

Client: Brown and Caldwell Project/Site: Patchogue, NY

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Ground Water Prep Type: Total/NA

		Percent Surrogate					
		DCA	BFB	DBFM	TOL		
Lab Sample ID	Client Sample ID	(80-120)	(80-120)	(80-120)	(80-120)		
410-88035-1	MW-1-20220614	101	102	101	101		
410-88035-2	MW-10S-20220614	98	99	99	100		
410-88035-4	MW-7S-20220615	99 cn	100 cn	101 cn	100 cn		
410-88035-5	MW-14S-20220615	100	99	102	100		
410-88035-5 MS	MW-14S-20220615 (MS)	98	98	99	100		
410-88035-5 MSD	MW-14S-20220615 (MSD)	97	98	99	100		
410-88035-6	MW-12S-20220615	100	105	96	103		
410-88035-7	MW-12D-20220615	100	104	95	104		
410-88035-8	MW-8S-20220615	100	103	97	103		
410-88035-9	MW-11S-20220615	94	105	94	103		
410-88035-10	MW-4S-20220616	96	104	93	105		
410-88035-11	MW-3-20220616	95	103	93	103		
410-88035-12	MW-13S-20220616	114	88	117	94		
410-88035-13	MW-13D-20220616	112	85	117	95		
410-88035-14	DUP-20220616	111	91	118	96		

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)							
		DCA	BFB	DBFM	TOL				
Lab Sample ID	Client Sample ID	(80-120)	(80-120)	(80-120)	(80-120)				
410-88035-3	FB-20220614	99	102	101	102	- <u> </u>			
410-88035-15	Trip Blank-20220616	109	86	115	95				
LCS 410-269508/4	Lab Control Sample	95	100	98	101				
LCS 410-269899/4	Lab Control Sample	97	103	98	103				
LCS 410-269950/4	Lab Control Sample	103	94	106	101				
LCSD 410-269899/5	Lab Control Sample Dup	94	103	98	104				
LCSD 410-269950/5	Lab Control Sample Dup	104	95	105	101				
MB 410-269508/6	Method Blank	95	100	99	102				
MB 410-269899/7	Method Blank	99	104	95	103				
MB 410-269950/7	Method Blank	108	86	113	95				

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Page 22 of 45

Client: Brown and Caldwell Project/Site: Patchogue, NY

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

Matrix: Ground Water Prep Type: Total/NA

			Pe	ercent Surre
		BAPd12	MNPd10	FLN10
Lab Sample ID	Client Sample ID	(10-110)	(36-111)	(47-128)
410-88035-1	MW-1-20220614	54	62	77
410-88035-2	MW-10S-20220614	74	73	85
410-88035-4	MW-7S-20220615	80	78	91
410-88035-5	MW-14S-20220615	77	81	96
410-88035-5 MS	MW-14S-20220615 (MS)	81	75	95
410-88035-5 MSD	MW-14S-20220615 (MSD)	82	77	92
410-88035-6	MW-12S-20220615	58	73	86
410-88035-7	MW-12D-20220615	66	74	87
410-88035-8	MW-8S-20220615	74	74	87
410-88035-9	MW-11S-20220615	82	77	92
410-88035-9 - DL	MW-11S-20220615	86	80	94
410-88035-10	MW-4S-20220616	73	75	85
410-88035-10 - DL	MW-4S-20220616	72	79	95
410-88035-11	MW-3-20220616	36 cn	0.5 S1-	28 S1- cn
			cn	
410-88035-12	MW-13S-20220616	71	62	75
410-88035-12 - DL	MW-13S-20220616	69	82	88
410-88035-13	MW-13D-20220616	71	67	85
410-88035-14	DUP-20220616	79	74	100
410-88035-14 - DL	DUP-20220616	78	99	98
Surrogate Legend				
BAPd12 = Benzo(a)p	vrene_d12 (Surr)			

BAPd12 = Benzo(a)pyrene-d12 (Surr)

MNPd10 = 1-Methylnaphthalene-d10 (Surr)

FLN10 = Fluoranthene-d10 (Surr)

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)							
		BAPd12	MNPd10	FLN10					
Lab Sample ID	Client Sample ID	(10-110)	(36-111)	(47-128)					
410-88035-3	FB-20220614	85	75	87					
LCS 410-267627/2-A	Lab Control Sample	87	71	82					
LCS 410-268442/2-A	Lab Control Sample	91	74	96					
LCS 410-268735/2-A	Lab Control Sample	87	73	85					
LCSD 410-268442/3-A	Lab Control Sample Dup	89	69	93					
MB 410-267627/1-A	Method Blank	83	73	81					
MB 410-268442/1-A	Method Blank	75	72	78					
MB 410-268735/1-A	Method Blank	93	82	91					

Surrogate Legend

BAPd12 = Benzo(a)pyrene-d12 (Surr)

MNPd10 = 1-Methylnaphthalene-d10 (Surr)

FLN10 = Fluoranthene-d10 (Surr)

Client: Brown and Caldwell Project/Site: Patchogue, NY

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 410-269508/6

Matrix: Water

Analysis Batch: 269508

Client	Sample	ID:	Metho	od Blank	(
	Pr	ep 1	vpe:	Total/NA	•

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.30	ug/L			06/26/22 18:46	1
Ethylbenzene	ND		1.0	0.40	ug/L			06/26/22 18:46	1
Toluene	ND		1.0	0.20	ug/L			06/26/22 18:46	1
Xylenes, Total	ND		1.0	0.40	ug/L			06/26/22 18:46	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		80 - 120		06/26/22 18:46	1
4-Bromofluorobenzene (Surr)	100		80 - 120		06/26/22 18:46	1
Dibromofluoromethane (Surr)	99		80 - 120		06/26/22 18:46	1
Toluene-d8 (Surr)	102		80 - 120		06/26/22 18:46	1

Lab Sample ID: LCS 410-269508/4

Matrix: Water

Analysis Batch: 269508

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	20.0	19.9		ug/L		99	80 - 120	
Ethylbenzene	20.0	18.6		ug/L		93	80 - 120	
Toluene	20.0	19.5		ug/L		97	80 - 120	
Xylenes, Total	60.0	53.0		ug/L		88	80 - 120	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	95		80 - 120
4-Bromofluorobenzene (Surr)	100		80 - 120
Dibromofluoromethane (Surr)	98		80 - 120
Toluene-d8 (Surr)	101		80 - 120

Lab Sample ID: 410-88035-5 MS

Matrix: Ground Water Analysis Batch: 269508

7 maryolo Batom 20000	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		20.0	22.1		ug/L		110	80 - 120	
Ethylbenzene	ND		20.0	20.4		ug/L		102	80 - 120	
Toluene	ND		20.0	21.0		ug/L		105	80 - 120	
Xylenes, Total	ND		60.0	58.1		ug/L		97	80 - 120	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		80 - 120
4-Bromofluorobenzene (Surr)	98		80 - 120
Dibromofluoromethane (Surr)	99		80 - 120
Toluene-d8 (Surr)	100		80 - 120

Client Sample ID: MW-14S-20220615 (MS)

Client: Brown and Caldwell Project/Site: Patchogue, NY

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 410-88035-5 MSD Client Sample ID: MW-14S-20220615 (MSD) **Matrix: Ground Water** Prep Type: Total/NA

Analysis Batch: 269508

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		20.0	21.3		ug/L		107	80 - 120	3	30
Ethylbenzene	ND		20.0	19.8		ug/L		99	80 - 120	3	30
Toluene	ND		20.0	20.6		ug/L		103	80 - 120	2	30
Xylenes, Total	ND		60.0	56.6		ug/L		94	80 - 120	3	30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		80 - 120
4-Bromofluorobenzene (Surr)	98		80 - 120
Dibromofluoromethane (Surr)	99		80 - 120
Toluene-d8 (Surr)	100		80 - 120

Lab Sample ID: MB 410-269899/7 **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 269899

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL MDL Unit **Prepared** Analyzed Dil Fac Benzene 1.0 0.30 ug/L 06/27/22 17:50 ND Ethylbenzene ND 1.0 0.40 ug/L 06/27/22 17:50 Toluene ND 1.0 0.20 ug/L 06/27/22 17:50 ND 06/27/22 17:50 Xylenes, Total 1.0 0.40 ug/L

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		80 - 120	 	06/27/22 17:50	1
4-Bromofluorobenzene (Surr)	104		80 - 120		06/27/22 17:50	1
Dibromofluoromethane (Surr)	95		80 - 120		06/27/22 17:50	1
Toluene-d8 (Surr)	103		80 - 120		06/27/22 17:50	1

Lab Sample ID: LCS 410-269899/4

Matrix: Water

Analysis Batch: 269899

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	20.0	21.0		ug/L		105	80 - 120	
Ethylbenzene	20.0	20.4		ug/L		102	80 - 120	
Toluene	20.0	20.0		ug/L		100	80 - 120	
Xylenes, Total	60.0	58.5		ug/L		98	80 - 120	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		80 - 120
4-Bromofluorobenzene (Surr)	103		80 - 120
Dibromofluoromethane (Surr)	98		80 - 120
Toluene-d8 (Surr)	103		80 - 120

Client: Brown and Caldwell Project/Site: Patchogue, NY

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 269899

Lab Sample ID: LCSD 410-269899/5

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	20.0	21.0		ug/L		105	80 - 120	0	30
Ethylbenzene	20.0	20.6		ug/L		103	80 - 120	1	30
Toluene	20.0	20.2		ug/L		101	80 - 120	1	30
Xylenes, Total	60.0	59.1		ug/L		99	80 - 120	1	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	94		80 - 120
4-Bromofluorobenzene (Surr)	103		80 - 120
Dibromofluoromethane (Surr)	98		80 - 120
Toluene-d8 (Surr)	104		80 - 120

Client Sample ID: Method Blank

Prep Type: Total/NA

Lab Sample ID: MB 410-269950/7

Matrix: Water

Analysis Batch: 269950

MR MR

	IND	1410							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.30	ug/L			06/27/22 21:23	1
Ethylbenzene	ND		1.0	0.40	ug/L			06/27/22 21:23	1
Toluene	ND		1.0	0.20	ug/L			06/27/22 21:23	1
Xylenes, Total	ND		1.0	0.40	ug/L			06/27/22 21:23	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepare	ed Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108	80 - 120		06/27/22 21:23	1
4-Bromofluorobenzene (Surr)	86	80 - 120		06/27/22 21:23	1
Dibromofluoromethane (Surr)	113	80 - 120		06/27/22 21:23	1
Toluene-d8 (Surr)	95	80 - 120		06/27/22 21:23	1

Lab Sample ID: LCS 410-269950/4

Matrix: Water

Analysis Batch: 269950

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	20.0	18.9		ug/L		95	80 - 120	
Ethylbenzene	20.0	17.8		ug/L		89	80 - 120	
Toluene	20.0	18.3		ug/L		91	80 - 120	
Xylenes, Total	60.0	54.3		ug/L		91	80 - 120	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		80 - 120
4-Bromofluorobenzene (Surr)	94		80 - 120
Dibromofluoromethane (Surr)	106		80 - 120
Toluene-d8 (Surr)	101		80 - 120

Client: Brown and Caldwell Project/Site: Patchogue, NY

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 410-269950/5

Matrix: Water

Analysis Batch: 269950

Client Sample	ID: Lab	Contro	ol Sam	ple Dup
		Prep '	Type: 1	otal/NA

Spike	LCSD	LCSD				%Rec		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
20.0	18.4		ug/L		92	80 - 120	3	30
20.0	17.4		ug/L		87	80 - 120	2	30
20.0	18.1		ug/L		90	80 - 120	1	30
60.0	53.8		ug/L		90	80 - 120	1	30
	Added 20.0 20.0 20.0	Added Result 20.0 18.4 20.0 17.4 20.0 18.1	Added Result Qualifier 20.0 18.4 20.0 17.4 20.0 18.1	Added Result Qualifier Unit 20.0 18.4 ug/L 20.0 17.4 ug/L 20.0 18.1 ug/L	Added Result Qualifier Unit D 20.0 18.4 ug/L ug/L 20.0 17.4 ug/L ug/L 20.0 18.1 ug/L	Added Result Qualifier Unit D %Rec 20.0 18.4 ug/L 92 20.0 17.4 ug/L 87 20.0 18.1 ug/L 90	Added Result Qualifier Unit D %Rec Limits 20.0 18.4 ug/L 92 80 - 120 20.0 17.4 ug/L 87 80 - 120 20.0 18.1 ug/L 90 80 - 120	Added Result Qualifier Unit D %Rec Limits RPD 20.0 18.4 ug/L 92 80 - 120 3 20.0 17.4 ug/L 87 80 - 120 2 20.0 18.1 ug/L 90 80 - 120 1

LCSD LCSD %Recovery Qualifier Surrogate Limits 104 95

1,2-Dichloroethane-d4 (Surr) 80 - 120 4-Bromofluorobenzene (Surr) 80 - 120 Dibromofluoromethane (Surr) 105 80 - 120 Toluene-d8 (Surr) 101 80 - 120

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 410-267627/1-A

Matrix: Water

Analysis Batch: 267929

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 267627

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Acenaphthene ND 0.050 0.010 ug/L 06/21/22 09:44 06/22/22 06:23 ND 0.010 ug/L 06/21/22 09:44 06/22/22 06:23 Acenaphthylene 0.050 Anthracene ND 0.050 0.010 ug/L 06/21/22 09:44 06/22/22 06:23 0.010 ug/L Benzo[a]anthracene ND 0.050 06/21/22 09:44 06/22/22 06:23 Benzo[a]pyrene ND 0.050 0.010 ug/L 06/21/22 09:44 06/22/22 06:23 ND 0.050 06/21/22 09:44 06/22/22 06:23 Benzo[b]fluoranthene 0.010 ug/L Benzo[g,h,i]perylene ND 0.050 0.010 ug/L 06/21/22 09:44 06/22/22 06:23 Benzo[k]fluoranthene ND 0.050 0.010 ug/L 06/21/22 09:44 06/22/22 06:23 Chrysene ND 0.050 0.010 ug/L 06/21/22 09:44 06/22/22 06:23 Dibenz(a,h)anthracene ND 0.050 0.020 ug/L 06/21/22 09:44 06/22/22 06:23 Fluoranthene ND 0.050 0.010 ug/L 06/21/22 09:44 06/22/22 06:23 Fluorene ND 0.050 0.010 ug/L 06/21/22 09:44 06/22/22 06:23 ND Indeno[1,2,3-cd]pyrene 0.050 0.020 ug/L 06/21/22 09:44 06/22/22 06:23 ND 06/21/22 09:44 06/22/22 06:23 Naphthalene 0.070 0.030 ug/L Phenanthrene ND 0.070 0.030 ug/L 06/21/22 09:44 06/22/22 06:23 Pyrene ND 0.050 0.010 ug/L 06/21/22 09:44 06/22/22 06:23

MB MB Surrogate %Recovery Qualifier

Surrogate	%Recovery Qualifier	Limits
Benzo(a)pyrene-d12 (Surr)	83	10 - 110
1-Methylnaphthalene-d10 (Surr)	73	36 - 111
Fluoranthene-d10 (Surr)	81	47 - 128

06/21/22 09:44	06/22/22 06:23	1
06/21/22 09:44	06/22/22 06:23	1
06/21/22 09:44	06/22/22 06:23	1

Client Sample ID: Lab Control Sample

%Rec

Analyzed

Prep Type: Total/NA Prep Batch: 267627

Prepared

Lab Sample ID: LCS 410-267627/2-A

Matrix: Water

Analysis Batch: 267929		
	Spike	LCS LCS
A see a live A se	Added	Decult Qualifier Helt

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	1.00	0.730		ug/L		73	42 - 120
Acenaphthylene	1.00	0.717		ug/L		72	49 - 120
Anthracene	1.00	0.793		ug/L		79	54 - 121

Eurofins Lancaster Laboratories Environment Testing, LLC

Dil Fac

Client: Brown and Caldwell Project/Site: Patchogue, NY

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 410-267627/2-A

Matrix: Water

Analysis Batch: 267929

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 267627

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzo[a]anthracene	1.00	0.877		ug/L		88	61 - 122	
Benzo[a]pyrene	1.00	0.808		ug/L		81	60 - 120	
Benzo[b]fluoranthene	1.00	0.952		ug/L		95	58 - 122	
Benzo[g,h,i]perylene	1.00	0.749		ug/L		75	50 - 120	
Benzo[k]fluoranthene	1.00	0.871		ug/L		87	57 - 128	
Chrysene	1.00	0.794		ug/L		79	55 - 123	
Dibenz(a,h)anthracene	1.00	0.793		ug/L		79	50 - 121	
Fluoranthene	1.00	0.830		ug/L		83	61 - 123	
Fluorene	1.00	0.796		ug/L		80	55 - 120	
Indeno[1,2,3-cd]pyrene	1.00	0.868		ug/L		87	47 - 143	
Naphthalene	1.00	0.626		ug/L		63	20 - 120	
Phenanthrene	1.00	0.789		ug/L		79	59 - 120	
Pyrene	1.00	0.721		ug/L		72	46 - 122	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Benzo(a)pyrene-d12 (Surr)	87		10 - 110
1-Methylnaphthalene-d10 (Surr)	71		36 - 111
Fluoranthene-d10 (Surr)	82		47 - 128

Lab Sample ID: 410-88035-5 MS

Matrix: Ground Water

Client Sample ID: MW-14S-20220615 (MS)

Prep Type: Total/NA

Prep Batch: 267981

Analysis Batch: 268849	Sample	Sample	Spike	MS	MS				Prep Batch: 26
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	0.61		1.01	1.35		ug/L		74	42 - 120
Acenaphthylene	0.021	J	1.01	0.871		ug/L		84	49 - 120
Anthracene	0.026	J	1.01	0.965		ug/L		93	54 - 121
Benzo[a]anthracene	0.013	J	1.01	0.971		ug/L		95	61 - 122
Benzo[a]pyrene	0.013	J	1.01	0.806		ug/L		78	60 - 120
Benzo[b]fluoranthene	0.012	J	1.01	0.888		ug/L		87	58 - 122
Benzo[g,h,i]perylene	ND		1.01	0.710		ug/L		70	50 - 120
Benzo[k]fluoranthene	ND		1.01	0.902		ug/L		89	57 - 128
Chrysene	0.015	J	1.01	0.861		ug/L		84	55 - 123
Dibenz(a,h)anthracene	ND		1.01	0.784		ug/L		77	50 - 121
Fluoranthene	0.027	J	1.01	1.00		ug/L		97	61 - 123
Fluorene	0.12		1.01	1.00		ug/L		88	55 - 120
Indeno[1,2,3-cd]pyrene	ND		1.01	0.792		ug/L		78	47 - 143
Naphthalene	0.30		1.01	1.03		ug/L		73	20 - 120
Phenanthrene	0.10		1.01	0.935		ug/L		82	59 - 120
Pyrene	0.034	J	1.01	0.920		ug/L		88	46 - 122

MS MS

Surrogate	%Recovery	Qualifier	Limits
Benzo(a)pyrene-d12 (Surr)	81		10 - 110
1-Methylnaphthalene-d10 (Surr)	75		36 - 111
Fluoranthene-d10 (Surr)	95		47 - 128

Client: Brown and Caldwell Project/Site: Patchogue, NY

4

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: 410-88035-5 MSD

Matrix: Ground Water Analysis Batch: 268849 Client Sample ID: MW-14S-20220615 (MSD)

Prep Type: Total/NA Prep Batch: 267981

Sample Sample Spike MSD MSD %Rec **RPD** Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Acenaphthene 0.61 1.01 1.35 ug/L 73 42 - 120 0 30 Acenaphthylene ug/L 0.021 J 1.01 0.902 87 49 - 120 30 0.026 J 0.963 54 - 121 30 Anthracene 1.01 ug/L 93 0 0.013 J 1.01 100 61 - 122 30 Benzo[a]anthracene 1.02 ug/L 5 60 - 120 Benzo[a]pyrene 0.013 J 1.01 0.820 ug/L 80 2 30 Benzo[b]fluoranthene 0.012 J 1.01 0.913 ug/L 89 58 - 122 30 Benzo[g,h,i]perylene ND 1.01 0.691 ug/L 69 50 - 120 3 30 Benzo[k]fluoranthene ND 1.01 0.926 ug/L 92 57 - 128 3 30 0.015 Chrysene 1.01 0.886 ug/L 86 55 - 123 3 30 30 Dibenz(a,h)anthracene ND 1.01 0.764 ug/L 76 50 - 121 3 Fluoranthene 0.027 J 1.01 0.987 61 - 123 30 ug/L 95 Fluorene 0.12 1.01 1.05 ug/L 92 55 - 120 30 Indeno[1,2,3-cd]pyrene ND 1.01 0.769 ug/L 76 47 - 143 3 30 Naphthalene 0.30 77 20 - 120 30 1.01 1.08 ug/L Phenanthrene 0.10 1.01 0.933 ug/L 82 59 - 120 30 Pyrene 0.034 1.01 0.996 ug/L 95 46 - 122

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
Benzo(a)pyrene-d12 (Surr)	82		10 - 110
1-Methylnaphthalene-d10 (Surr)	77		36 - 111
Fluoranthene-d10 (Surr)	92		47 - 128

Lab Sample ID: MB 410-268442/1-A

Matrix: Water

Analysis Batch: 268849

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 268442

_	MB I	MB						-	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.050	0.010	ug/L		06/23/22 09:00	06/24/22 06:12	1
Acenaphthylene	ND		0.050	0.010	ug/L		06/23/22 09:00	06/24/22 06:12	1
Anthracene	ND		0.050	0.010	ug/L		06/23/22 09:00	06/24/22 06:12	1
Benzo[a]anthracene	ND		0.050	0.010	ug/L		06/23/22 09:00	06/24/22 06:12	1
Benzo[a]pyrene	ND		0.050	0.010	ug/L		06/23/22 09:00	06/24/22 06:12	1
Benzo[b]fluoranthene	ND		0.050	0.010	ug/L		06/23/22 09:00	06/24/22 06:12	1
Benzo[g,h,i]perylene	ND		0.050	0.010	ug/L		06/23/22 09:00	06/24/22 06:12	1
Benzo[k]fluoranthene	ND		0.050	0.010	ug/L		06/23/22 09:00	06/24/22 06:12	1
Chrysene	ND		0.050	0.010	ug/L		06/23/22 09:00	06/24/22 06:12	1
Dibenz(a,h)anthracene	ND		0.050	0.020	ug/L		06/23/22 09:00	06/24/22 06:12	1
Fluoranthene	ND		0.050	0.010	ug/L		06/23/22 09:00	06/24/22 06:12	1
Fluorene	ND		0.050	0.010	ug/L		06/23/22 09:00	06/24/22 06:12	1
Indeno[1,2,3-cd]pyrene	ND		0.050	0.020	ug/L		06/23/22 09:00	06/24/22 06:12	1
Naphthalene	ND		0.070	0.030	ug/L		06/23/22 09:00	06/24/22 06:12	1
Phenanthrene	ND		0.070	0.030	ug/L		06/23/22 09:00	06/24/22 06:12	1
Pyrene	ND		0.050	0.010	ug/L		06/23/22 09:00	06/24/22 06:12	1

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	75	10 - 110	06/23/22 09:00	06/24/22 06:12	1
1-Methylnaphthalene-d10 (Surr)	72	36 - 111	06/23/22 09:00	06/24/22 06:12	1
Fluoranthene-d10 (Surr)	78	47 - 128	06/23/22 09:00	06/24/22 06:12	1

Eurofins Lancaster Laboratories Environment Testing, LLC

Page 29 of 45

6/30/2022 (Rev. 1)

3

4

6

7

0

10

11

13

14

Client: Brown and Caldwell Project/Site: Patchogue, NY

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: LCS 410-268442/2-A

Matrix: Water

Acenaphthene

Anthracene

Acenaphthylene

Analyte

Analysis Batch: 268849

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 268442

%Rec %Rec Limits D 101 42 - 120 109 49 - 120 54 - 121 118 117 61 - 122106 60 - 120109 58 - 122 94 50 - 120 111 57 - 128 104 55 - 123102 50 - 12161 - 123118

Benzo[a]anthracene 1.00 1.17 ug/L Benzo[a]pyrene 1.00 1.06 ug/L 1.00 1.09 Benzo[b]fluoranthene ug/L 1.00 0.945 Benzo[g,h,i]perylene ug/L Benzo[k]fluoranthene 1.00 1.11 ug/L ug/L Chrysene 1.00 1.04 Dibenz(a,h)anthracene 1.00 1.02 ug/L Fluoranthene 1.00 1.18 ug/L Fluorene 1.00 1.11 ug/L 111 55 - 120 Indeno[1,2,3-cd]pyrene 1.00 1.05 ug/L 105 47 - 143 1.00 102 Naphthalene 1.02 ug/L 20 - 120 Phenanthrene 1.00 1.09 109 ug/L 59 - 120 Pyrene 1.00 1.14 ug/L 114 46 - 122

Spike

Added

1.00

1.00

1.00

LCS LCS

1.01

1.09

1.18

Result Qualifier

Unit

ug/L

ug/L

ug/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Benzo(a)pyrene-d12 (Surr)	91		10 - 110
1-Methylnaphthalene-d10 (Surr)	74		36 - 111
Fluoranthene-d10 (Surr)	96		47 - 128

Lab Sample ID: LCSD 410-268442/3-A

Matrix: Water

Analysis Batch: 268849

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 268442

Spike LCSD LCSD %Rec **RPD** Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit Acenaphthene 1.00 1.03 ug/L 103 42 - 120 2 30 Acenaphthylene 1.00 1.07 ug/L 107 49 - 120 30 Anthracene 1.00 1.15 ug/L 115 54 - 121 3 30 Benzo[a]anthracene 1.00 1.18 ug/L 118 61 - 122 30 Benzo[a]pyrene 1.00 1.07 ug/L 107 60 - 120 30 Benzo[b]fluoranthene 1.00 ug/L 112 58 - 122 2 30 1.12 100 30 Benzo[g,h,i]perylene 1.00 0.999 ug/L 50 - 120 Benzo[k]fluoranthene 1.00 57 - 128 30 1.13 ug/L 113 Chrysene 1.00 1.04 ug/L 104 55 - 123 30 Dibenz(a,h)anthracene 1.00 ug/L 106 50 - 121 30 1.06 Fluoranthene 1.00 1.16 ug/L 116 61 - 123 30 Fluorene 1.00 1.09 ug/L 109 55 - 120 30 Indeno[1,2,3-cd]pyrene 1.00 1.12 ug/L 112 47 - 143 6 30 Naphthalene 1.00 1.00 ug/L 100 20 - 120 2 30 Phenanthrene 1.00 ug/L 107 2 30 1.07 59 - 120 Pyrene 1.00 1.14 ug/L 114 46 - 122 30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Benzo(a)pyrene-d12 (Surr)	89		10 - 110
1-Methylnaphthalene-d10 (Surr)	69		36 - 111
Fluoranthene-d10 (Surr)	93		47 - 128

Client: Brown and Caldwell Project/Site: Patchogue, NY

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

MB MB

Lab Sample ID: MB 410-268735/1-A

Matrix: Water

Analysis Batch: 268864

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 268735

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND ND		0.050	0.010	ug/L		06/23/22 15:50	06/24/22 07:14	1
Acenaphthylene	ND		0.050	0.010	ug/L		06/23/22 15:50	06/24/22 07:14	1
Anthracene	ND		0.050	0.010	ug/L		06/23/22 15:50	06/24/22 07:14	1
Benzo[a]anthracene	ND		0.050	0.010	ug/L		06/23/22 15:50	06/24/22 07:14	1
Benzo[a]pyrene	ND		0.050	0.010	ug/L		06/23/22 15:50	06/24/22 07:14	1
Benzo[b]fluoranthene	ND		0.050	0.010	ug/L		06/23/22 15:50	06/24/22 07:14	1
Benzo[g,h,i]perylene	ND		0.050	0.010	ug/L		06/23/22 15:50	06/24/22 07:14	1
Benzo[k]fluoranthene	ND		0.050	0.010	ug/L		06/23/22 15:50	06/24/22 07:14	1
Chrysene	ND		0.050	0.010	ug/L		06/23/22 15:50	06/24/22 07:14	1
Dibenz(a,h)anthracene	ND		0.050	0.020	ug/L		06/23/22 15:50	06/24/22 07:14	1
Fluoranthene	ND		0.050	0.010	ug/L		06/23/22 15:50	06/24/22 07:14	1
Fluorene	ND		0.050	0.010	ug/L		06/23/22 15:50	06/24/22 07:14	1
Indeno[1,2,3-cd]pyrene	ND		0.050	0.020	ug/L		06/23/22 15:50	06/24/22 07:14	1
Naphthalene	ND		0.070	0.030	ug/L		06/23/22 15:50	06/24/22 07:14	1
Phenanthrene	ND		0.070	0.030	ug/L		06/23/22 15:50	06/24/22 07:14	1
Pyrene	ND		0.050	0.010	ug/L		06/23/22 15:50	06/24/22 07:14	1

	IND	IND				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	93		10 - 110	06/23/22 15:50	06/24/22 07:14	1
1-Methylnaphthalene-d10 (Surr)	82		36 - 111	06/23/22 15:50	06/24/22 07:14	1
Fluoranthene-d10 (Surr)	91		47 - 128	06/23/22 15:50	06/24/22 07:14	1
	Benzo(a)pyrene-d12 (Surr) 1-Methylnaphthalene-d10 (Surr)	Surrogate %Recovery Benzo(a)pyrene-d12 (Surr) 93 1-Methylnaphthalene-d10 (Surr) 82	Benzo(a)pyrene-d12 (Surr) 93 1-Methylnaphthalene-d10 (Surr) 82	Surrogate %Recovery Qualifier Limits Benzo(a)pyrene-d12 (Surr) 93 10 - 110 1-Methylnaphthalene-d10 (Surr) 82 36 - 111	Surrogate %Recovery Qualifier Limits Prepared Benzo(a)pyrene-d12 (Surr) 93 10 - 110 06/23/22 15:50 1-Methylnaphthalene-d10 (Surr) 82 36 - 111 06/23/22 15:50	Surrogate %Recovery Benzo(a)pyrene-d12 (Surr) Qualifier Limits Prepared Analyzed 1-Methylnaphthalene-d10 (Surr) 93 10 - 110 06/23/22 15:50 06/24/22 07:14 1-Methylnaphthalene-d10 (Surr) 82 36 - 111 06/23/22 15:50 06/24/22 07:14

Lab Sample ID: LCS 410-268735/2-A

Matrix: Water

Analysis Batch: 268864

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 268735**

7 mary old Datom 20000 .	Spike	LCS	LCS				%Rec
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Acenaphthene	1.00	0.866		ug/L		87	42 - 120
Acenaphthylene	1.00	0.933		ug/L		93	49 - 120
Anthracene	1.00	0.940		ug/L		94	54 - 121
Benzo[a]anthracene	1.00	1.02		ug/L		102	61 - 122
Benzo[a]pyrene	1.00	0.946		ug/L		95	60 - 120
Benzo[b]fluoranthene	1.00	1.08		ug/L		108	58 - 122
Benzo[g,h,i]perylene	1.00	1.02		ug/L		102	50 - 120
Benzo[k]fluoranthene	1.00	0.973		ug/L		97	57 - 128
Chrysene	1.00	0.913		ug/L		91	55 - 123
Dibenz(a,h)anthracene	1.00	1.11		ug/L		111	50 - 121
Fluoranthene	1.00	0.987		ug/L		99	61 - 123
Fluorene	1.00	0.986		ug/L		99	55 - 120
Indeno[1,2,3-cd]pyrene	1.00	1.16		ug/L		116	47 - 143
Naphthalene	1.00	0.783		ug/L		78	20 - 120
Phenanthrene	1.00	0.935		ug/L		94	59 - 120
Pyrene	1.00	0.903		ug/L		90	46 - 122

LCS LCS

Surrogate	%Recovery Q	Qualifier	Limits
Benzo(a)pyrene-d12 (Surr)	87		10 - 110
1-Methylnaphthalene-d10 (Surr)	73		36 - 111
Fluoranthene-d10 (Surr)	85		47 - 128

GC/MS VOA

Analysis Batch: 269508

Client: Brown and Caldwell

Project/Site: Patchogue, NY

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-88035-1	MW-1-20220614	Total/NA	Ground Water	8260D	
410-88035-2	MW-10S-20220614	Total/NA	Ground Water	8260D	
410-88035-3	FB-20220614	Total/NA	Water	8260D	
410-88035-4	MW-7S-20220615	Total/NA	Ground Water	8260D	
410-88035-5	MW-14S-20220615	Total/NA	Ground Water	8260D	
MB 410-269508/6	Method Blank	Total/NA	Water	8260D	
LCS 410-269508/4	Lab Control Sample	Total/NA	Water	8260D	
410-88035-5 MS	MW-14S-20220615 (MS)	Total/NA	Ground Water	8260D	
410-88035-5 MSD	MW-14S-20220615 (MSD)	Total/NA	Ground Water	8260D	

Analysis Batch: 269899

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-88035-6	MW-12S-20220615	Total/NA	Ground Water	8260D	
410-88035-7	MW-12D-20220615	Total/NA	Ground Water	8260D	
410-88035-8	MW-8S-20220615	Total/NA	Ground Water	8260D	
410-88035-9	MW-11S-20220615	Total/NA	Ground Water	8260D	
410-88035-10	MW-4S-20220616	Total/NA	Ground Water	8260D	
410-88035-11	MW-3-20220616	Total/NA	Ground Water	8260D	
MB 410-269899/7	Method Blank	Total/NA	Water	8260D	
LCS 410-269899/4	Lab Control Sample	Total/NA	Water	8260D	
LCSD 410-269899/5	Lab Control Sample Dup	Total/NA	Water	8260D	

Analysis Batch: 269950

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-88035-12	MW-13S-20220616	Total/NA	Ground Water	8260D	
410-88035-13	MW-13D-20220616	Total/NA	Ground Water	8260D	
410-88035-14	DUP-20220616	Total/NA	Ground Water	8260D	
410-88035-15	Trip Blank-20220616	Total/NA	Water	8260D	
MB 410-269950/7	Method Blank	Total/NA	Water	8260D	
LCS 410-269950/4	Lab Control Sample	Total/NA	Water	8260D	
LCSD 410-269950/5	Lab Control Sample Dup	Total/NA	Water	8260D	

GC/MS Semi VOA

Prep Batch: 267627

Lab Sample ID 410-88035-1	Client Sample ID MW-1-20220614	Prep Type Total/NA	Matrix Ground Water	Method 3510C	Prep Batch
410-88035-2	MW-10S-20220614	Total/NA	Ground Water	3510C	
410-88035-3	FB-20220614	Total/NA	Water	3510C	
MB 410-267627/1-A	Method Blank	Total/NA	Water	3510C	
LCS 410-267627/2-A	Lab Control Sample	Total/NA	Water	3510C	

Analysis Batch: 267929

Lab Sample ID 410-88035-1	Client Sample ID MW-1-20220614	Prep Type Total/NA	Matrix Ground Water	Method 8270E SIM	Prep Batch 267627
410-88035-2	MW-10S-20220614	Total/NA	Ground Water	8270E SIM	267627
410-88035-3	FB-20220614	Total/NA	Water	8270E SIM	267627
MB 410-267627/1-A	Method Blank	Total/NA	Water	8270E SIM	267627
LCS 410-267627/2-A	Lab Control Sample	Total/NA	Water	8270E SIM	267627

Eurofins Lancaster Laboratories Environment Testing, LLC

Page 32 of 45

2

1

4

6

8

11

12

14

1

6/30/2022 (Rev. 1)

Client: Brown and Caldwell Project/Site: Patchogue, NY

GC/MS Semi VOA

Prep Batch: 267981

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-88035-4	MW-7S-20220615	Total/NA	Ground Water	3510C	
410-88035-5	MW-14S-20220615	Total/NA	Ground Water	3510C	
410-88035-6	MW-12S-20220615	Total/NA	Ground Water	3510C	
410-88035-7	MW-12D-20220615	Total/NA	Ground Water	3510C	
410-88035-8	MW-8S-20220615	Total/NA	Ground Water	3510C	
410-88035-9 - DL	MW-11S-20220615	Total/NA	Ground Water	3510C	
410-88035-9	MW-11S-20220615	Total/NA	Ground Water	3510C	
410-88035-5 MS	MW-14S-20220615 (MS)	Total/NA	Ground Water	3510C	
410-88035-5 MSD	MW-14S-20220615 (MSD)	Total/NA	Ground Water	3510C	

Prep Batch: 268442

Lab Sample ID 410-88035-10 - DL	Client Sample ID MW-4S-20220616	Prep Type Total/NA	Matrix Ground Water	Method3510C	Prep Batch
410-88035-10	MW-4S-20220616	Total/NA	Ground Water	3510C	
MB 410-268442/1-A	Method Blank	Total/NA	Water	3510C	
LCS 410-268442/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 410-268442/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Prep Batch: 268735

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-88035-11	MW-3-20220616	Total/NA	Ground Water	3510C	
410-88035-12 - DL	MW-13S-20220616	Total/NA	Ground Water	3510C	
410-88035-12	MW-13S-20220616	Total/NA	Ground Water	3510C	
410-88035-13	MW-13D-20220616	Total/NA	Ground Water	3510C	
410-88035-14 - DL	DUP-20220616	Total/NA	Ground Water	3510C	
410-88035-14	DUP-20220616	Total/NA	Ground Water	3510C	
MB 410-268735/1-A	Method Blank	Total/NA	Water	3510C	
LCS 410-268735/2-A	Lab Control Sample	Total/NA	Water	3510C	

Analysis Batch: 268849

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-88035-4	MW-7S-20220615	Total/NA	Ground Water	8270E SIM	267981
410-88035-5	MW-14S-20220615	Total/NA	Ground Water	8270E SIM	267981
410-88035-6	MW-12S-20220615	Total/NA	Ground Water	8270E SIM	267981
410-88035-7	MW-12D-20220615	Total/NA	Ground Water	8270E SIM	267981
410-88035-8	MW-8S-20220615	Total/NA	Ground Water	8270E SIM	267981
410-88035-9	MW-11S-20220615	Total/NA	Ground Water	8270E SIM	267981
410-88035-9 - DL	MW-11S-20220615	Total/NA	Ground Water	8270E SIM	267981
MB 410-268442/1-A	Method Blank	Total/NA	Water	8270E SIM	268442
LCS 410-268442/2-A	Lab Control Sample	Total/NA	Water	8270E SIM	268442
LCSD 410-268442/3-A	Lab Control Sample Dup	Total/NA	Water	8270E SIM	268442
410-88035-5 MS	MW-14S-20220615 (MS)	Total/NA	Ground Water	8270E SIM	267981
410-88035-5 MSD	MW-14S-20220615 (MSD)	Total/NA	Ground Water	8270E SIM	267981

Analysis Batch: 268864

Lab Sample ID 410-88035-11	Client Sample ID MW-3-20220616	Prep Type Total/NA	Matrix Ground Water	Method 8270E SIM	Prep Batch 268735
410-88035-12	MW-13S-20220616	Total/NA	Ground Water	8270E SIM	268735
410-88035-13	MW-13D-20220616	Total/NA	Ground Water	8270E SIM	268735
MB 410-268735/1-A	Method Blank	Total/NA	Water	8270E SIM	268735
LCS 410-268735/2-A	Lab Control Sample	Total/NA	Water	8270E SIM	268735

Eurofins Lancaster Laboratories Environment Testing, LLC

2

4

6

8

9

11

4.6

14

QC Association Summary

Client: Brown and Caldwell Job ID: 410-88035-1 Project/Site: Patchogue, NY

GC/MS Semi VOA

Analysis Batch: 269470

Lab Sample ID 410-88035-10	Client Sample ID MW-4S-20220616	Prep Type Total/NA	Matrix Ground Water	Method 8270E SIM	Prep Batch 268442
410-88035-10 - DL	MW-4S-20220616	Total/NA	Ground Water	8270E SIM	268442
410-88035-12 - DL	MW-13S-20220616	Total/NA	Ground Water	8270E SIM	268735
410-88035-14	DUP-20220616	Total/NA	Ground Water	8270E SIM	268735
410-88035-14 - DL	DUP-20220616	Total/NA	Ground Water	8270E SIM	268735

Prep Batch: 269908

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-88035-11 - RE	MW-3-20220616	Total/NA	Ground Water	3510C	
410-88035-11 - REDL	MW-3-20220616	Total/NA	Ground Water	3510C	
MB 410-269908/1-A	Method Blank	Total/NA	Water	3510C	
LCS 410-269908/2-A	Lab Control Sample	Total/NA	Water	3510C	

Analysis Batch: 270056

Lab Sample ID 410-88035-11 - RE	Client Sample ID MW-3-20220616	Prep Type Total/NA	Matrix Ground Water	Method 8270E SIM	Prep Batch 269908
MB 410-269908/1-A	Method Blank	Total/NA	Water	8270E SIM	269908
LCS 410-269908/2-A	Lab Control Sample	Total/NA	Water	8270E SIM	269908

Analysis Batch: 270487

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-88035-11 - REDL	MW-3-20220616	Total/NA	Ground Water	8270E SIM	269908

6/30/2022 (Rev. 1)

Client: Brown and Caldwell Project/Site: Patchogue, NY

Client Sample ID: MW-1-20220614

Date Collected: 06/14/22 14:06 Date Received: 06/17/22 10:41

Lab Sample ID: 410-88035-1

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	269508	06/26/22 20:16	TQ4J	ELLE
Total/NA	Prep	3510C			267627	06/21/22 09:44	XPN5	ELLE
Total/NA	Analysis	8270E SIM		1	267929	06/22/22 12:54	UJM0	ELLE

Client Sample ID: MW-10S-20220614

Date Collected: 06/14/22 15:06 Date Received: 06/17/22 10:41

Lab Sample ID: 410-88035-2

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	269508	06/26/22 20:38	TQ4J	ELLE
Total/NA	Prep	3510C			267627	06/21/22 09:44	XPN5	ELLE
Total/NA	Analysis	8270E SIM		1	267929	06/22/22 13:16	UJM0	ELLE

Client Sample ID: FB-20220614

Date Collected: 06/14/22 15:45

Date Received: 06/17/22 10:41

Lab Sample ID: 410-88035-3

Matrix: Water

Dran Time	Batch	Batch	Dun	Dilution	Batch	Prepared	Amaluat	l ab
Prep Type Total/NA	Type Analvsis	_ Method 8260D	Run	_ <u>Factor</u> _	Number	or Analyzed 06/26/22 19:09	Analyst TQ4J	Lab ELLE
	,			'				
Total/NA	Prep	3510C				00/2 1/22 00111		ELLE
Total/NA	Analysis	8270E SIM		1	267929	06/22/22 13:38	UJM0	ELLE

Client Sample ID: MW-7S-20220615

Date Collected: 06/15/22 09:02

Date Received: 06/17/22 10:41

Lab Sample ID: 410-88035-4

Matrix: Ground Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	269508	06/26/22 21:00	TQ4J	ELLE
Total/NA	Prep	3510C			267981	06/22/22 09:57	DFX4	ELLE
Total/NA	Analysis	8270E SIM		1	268849	06/24/22 10:10	UJM0	ELLE

Client Sample ID: MW-14S-20220615

Date Collected: 06/15/22 10:01

Date Received: 06/17/22 10:41

Lab	Samp	le	ID:	410-8	8035-5
				_	

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D			269508	06/26/22 21:23	TQ4J	ELLE
Total/NA	Prep	3510C			267981	06/22/22 09:57	DFX4	ELLE
Total/NA	Analysis	8270E SIM		1	268849	06/24/22 09:05	UJM0	ELLE

Client Sample ID: MW-129-20220645

Client Sample ID: MW-12S-20220615	Lab Sample ID: 410-88035-6
Date Collected: 06/15/22 11:26	Matrix: Ground Water
Date Received: 06/17/22 10:41	

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D			269899	06/28/22 00:19	UKAD	ELLE

Eurofins Lancaster Laboratories Environment Testing, LLC

Page 35 of 45

6/30/2022 (Rev. 1)

Client: Brown and Caldwell Project/Site: Patchogue, NY

Client Sample ID: MW-12S-20220615

Date Collected: 06/15/22 11:26 Date Received: 06/17/22 10:41 Lab Sample ID: 410-88035-6

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			267981	06/22/22 09:57	DFX4	ELLE
Total/NA	Analysis	8270E SIM		1	268849	06/24/22 10:31	UJM0	ELLE

Client Sample ID: MW-12D-20220615

Date Collected: 06/15/22 12:06 Date Received: 06/17/22 10:41

Lab Sample ID: 410-88035-7

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	269899	06/28/22 00:44	UKAD	ELLE
Total/NA	Prep	3510C			267981	06/22/22 09:57	DFX4	ELLE
Total/NA	Analysis	8270E SIM		1	268849	06/24/22 10:53	UJM0	ELLE

Client Sample ID: MW-8S-20220615 Lab Sample ID: 410-88035-8

Date Collected: 06/15/22 14:19 Date Received: 06/17/22 10:41

Matrix: Ground Water

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	269899	06/28/22 01:10	UKAD	ELLE
Total/NA	Prep	3510C			267981	06/22/22 09:57	DFX4	ELLE
Total/NA	Analysis	8270E SIM		1	268849	06/24/22 11:15	UJM0	ELLE

Client Sample ID: MW-11S-20220615 Lab Sample ID: 410-88035-9

Date Collected: 06/15/22 15:06 Date Received: 06/17/22 10:41

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	269899	06/28/22 01:36	UKAD	ELLE
Total/NA	Prep	3510C			267981	06/22/22 09:57	DFX4	ELLE
Total/NA	Analysis	8270E SIM		1	268849	06/24/22 11:36	UJM0	ELLE
Total/NA	Prep	3510C	DL		267981	06/22/22 09:57	DFX4	ELLE

DL

Client Sample ID: MW-4S-20220616 Lab Sample ID: 410-88035-10 **Matrix: Ground Water**

10

268849 06/24/22 11:58 UJM0

Date Collected: 06/16/22 08:09 Date Received: 06/17/22 10:41

Analysis

8270E SIM

Total/NA

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D			269899	06/28/22 02:02	UKAD	ELLE
Total/NA	Prep	3510C			268442	06/23/22 09:00	DFX4	ELLE
Total/NA	Analysis	8270E SIM		1	269470	06/26/22 22:26	UJM0	ELLE
Total/NA	Prep	3510C	DL		268442	06/23/22 09:00	DFX4	ELLE
Total/NA	Analysis	8270E SIM	DL	10	269470	06/26/22 22:48	UJM0	ELLE

ELLE

2

Client: Brown and Caldwell Project/Site: Patchogue, NY

Client Sample ID: MW-3-20220616

Date Collected: 06/16/22 08:51 Date Received: 06/17/22 10:41 Lab Sample ID: 410-88035-11

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	269899	06/28/22 02:28	UKAD	ELLE
Total/NA	Prep	3510C	RE		269908	06/27/22 15:58	QJZ6	ELLE
Total/NA	Analysis	8270E SIM	RE	1	270056	06/28/22 13:52	UJM0	ELLE
Total/NA	Prep	3510C	REDL		269908	06/27/22 15:58	QJZ6	ELLE
Total/NA	Analysis	8270E SIM	REDL	10	270487	06/29/22 05:31	UJM0	ELLE
Total/NA	Prep	3510C			268735	06/23/22 15:50	QJZ6	ELLE
Total/NA	Analysis	8270E SIM		1	268864	06/24/22 17:46	SJ89	ELLE

Client Sample ID: MW-13S-20220616

Date Collected: 06/16/22 09:40 Date Received: 06/17/22 10:41 Lab Sample ID: 410-88035-12

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D			269950	06/27/22 23:37	Y6ZN	ELLE
Total/NA	Prep	3510C	DL		268735	06/23/22 15:50	QJZ6	ELLE
Total/NA	Analysis	8270E SIM	DL	5	269470	06/26/22 19:33	UJM0	ELLE
Total/NA	Prep	3510C			268735	06/23/22 15:50	QJZ6	ELLE
Total/NA	Analysis	8270E SIM		1	268864	06/24/22 18:08	SJ89	ELLE

Client Sample ID: MW-13D-20220616

Date Collected: 06/16/22 10:24 Date Received: 06/17/22 10:41 Lab Sample ID: 410-88035-13

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D			269950	06/27/22 23:59	Y6ZN	ELLE
Total/NA	Prep	3510C			268735	06/23/22 15:50	QJZ6	ELLE
Total/NA	Analysis	8270E SIM		1	268864	06/24/22 18:30	SJ89	ELLE

Client Sample ID: DUP-20220616

Date Collected: 06/16/22 00:00 Date Received: 06/17/22 10:41 Lab Sample ID: 410-88035-14

Lab Sample ID: 410-88035-15

Matrix: Ground Water

	Batch	h Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D			269950	06/28/22 00:21	Y6ZN	ELLE
Total/NA	Prep	3510C			268735	06/23/22 15:50	QJZ6	ELLE
Total/NA	Analysis	8270E SIM		1	269470	06/26/22 19:55	UJM0	ELLE
Total/NA	Prep	3510C	DL		268735	06/23/22 15:50	QJZ6	ELLE
Total/NA	Analysis	8270E SIM	DL	10	269470	06/26/22 20:16	UJM0	ELLE

Client Sample ID: Trip Blank-20220616

Date Collected: 06/16/22 00:00

Date Received: 06/17/22 10:41

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	269950	06/27/22 21:47	Y6ZN	ELLE

Eurofins Lancaster Laboratories Environment Testing, LLC

Page 37 of 45

Matrix: Water

1

5

6

8

10

12

14

Lab Chronicle

Client: Brown and Caldwell
Project/Site: Patchogue, NY

Job ID: 410-88035-1

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

3

4

5

7

8

9

10

12

Client: Brown and Caldwell Project/Site: Patchogue, NY

Laboratory: Eurofins Lancaster Laboratories Environment Testing, LLC

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date		
A2LA	Dept. of Defense ELAP	1.01	11-30-22		
A2LA	ISO/IEC 17025	0001.01	11-30-22		
Alaska	State	PA00009	06-30-22		
Alaska (UST)	State	17-027	02-28-23		
Arizona	State	AZ0780	03-12-23		
Arkansas DEQ	State	88-0660	08-10-22		
California	State	2792	11-30-22		
Colorado	State	PA00009	06-30-22		
Connecticut	State	PH-0746	06-30-23		
DE Haz. Subst. Cleanup Act (HSCA)	State	019-006 (PA cert)	01-31-23		
Delaware (DW)	State	N/A	01-31-23		
Florida	NELAP	E87997	06-30-22		
Georgia (DW)	State	C048	01-31-23		
Hawaii	State	N/A	01-31-23		
Illinois	NELAP	200027	01-31-23		
lowa	State	361	03-02-22 *		
Kansas	NELAP	E-10151	10-31-22		
Kentucky (DW)	State	KY90088	12-31-22		
Kentucky (UST)	State	1.01	11-30-22		
Kentucky (WW)	State	KY90088	01-01-23		
Louisiana	NELAP	02055	06-30-22		
Maine	State	2019012	03-12-23		
Maryland	State	100	06-30-23		
Massachusetts	State	M-PA009	06-30-22		
Michigan Minnesota	State	9930	01-31-23		
Minnesota	NELAP	042-999-487	12-31-22		
Missouri	State	450	01-31-25		
Montana (DW)	State	0098	01-01-23		
Montana (UST)	State	<cert no.=""></cert>	02-01-23		
Nebraska	State	NE-OS-32-17	01-31-23		
New Hampshire	NELAP	2730	01-10-23		
New Jersey	NELAP	PA011	06-30-22		
New York	NELAP	10670	04-01-23		
North Carolina (DW)	State	42705	07-31-22		
North Carolina (WW/SW)	State	521	12-31-22		
North Dakota	State	R-205	01-31-23		
Oklahoma	NELAP	R-205	08-31-22		
Oregon	NELAP	PA200001	09-11-22		
PALA	Canada	1978	09-16-24		
Pennsylvania	NELAP	36-00037	01-31-23		
Rhode Island	State	LAO00338	12-30-22		
South Carolina	State	89002	01-31-23		
Tennessee	State	02838	01-31-23		
Texas	NELAP	T104704194-21-40	08-31-22		
USDA	US Federal Programs	P330-19-00197	07-03-22		
Vermont	State	VT - 36037	10-28-22		
Virginia	NELAP	460182	06-15-23		
Washington	State	C457	04-11-23		
West Virginia (DW)	State	9906 C	12-31-22		
West Virginia DEP	State	055	07-31-22		

 $^{^{\}star}\,\text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Eurofins Lancaster Laboratories Environment Testing, LLC

6

A

8

9

11

Accreditation/Certification Summary

Client: Brown and Caldwell Job ID: 410-88035-1

Project/Site: Patchogue, NY

Laboratory: Eurofins Lancaster Laboratories Environment Testing, LLC (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
Wyoming	State	8TMS-L	01-31-23	
Wyoming (UST)	A2LA	1.01	11-30-22	

4

6

R

9

11

12

14

Method Summary

Client: Brown and Caldwell Project/Site: Patchogue, NY

Job ID: 410-88035-1

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	ELLE
8270E SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	ELLE
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	ELLE
5030C	Purge and Trap	SW846	ELLE

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

4

_

10

11

13

14

Sample Summary

Client: Brown and Caldwell
Project/Site: Patchogue, NY

Job ID: 410-88035-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
410-88035-1	MW-1-20220614	Ground Water	06/14/22 14:06	06/17/22 10:41
410-88035-2	MW-10S-20220614	Ground Water	06/14/22 15:06	06/17/22 10:41
410-88035-3	FB-20220614	Water	06/14/22 15:45	06/17/22 10:41
410-88035-4	MW-7S-20220615	Ground Water	06/15/22 09:02	06/17/22 10:41
410-88035-5	MW-14S-20220615	Ground Water	06/15/22 10:01	06/17/22 10:41
410-88035-6	MW-12S-20220615	Ground Water	06/15/22 11:26	06/17/22 10:41
410-88035-7	MW-12D-20220615	Ground Water	06/15/22 12:06	06/17/22 10:41
410-88035-8	MW-8S-20220615	Ground Water	06/15/22 14:19	06/17/22 10:41
410-88035-9	MW-11S-20220615	Ground Water	06/15/22 15:06	06/17/22 10:41
410-88035-10	MW-4S-20220616	Ground Water	06/16/22 08:09	06/17/22 10:41
410-88035-11	MW-3-20220616	Ground Water	06/16/22 08:51	06/17/22 10:41
410-88035-12	MW-13S-20220616	Ground Water	06/16/22 09:40	06/17/22 10:41
410-88035-13	MW-13D-20220616	Ground Water	06/16/22 10:24	06/17/22 10:41
410-88035-14	DUP-20220616	Ground Water	06/16/22 00:00	06/17/22 10:41
410-88035-15	Trip Blank-20220616	Water	06/16/22 00:00	06/17/22 10:41

Eurofins Lancaster Laboratories Environme													eurofins	_Fowgooment_lesting
2425 New Holland Pike Lancaster, PA 17601		nain	of Cus	tody F	Kec	ora								America
Phone: 717-656-2300 Fax: 717-656-2681								131111						
Client Information	Sampler AF	V/5	FS	Lab i Wey	yandt,	Barba	ara A	410-8	88035 (Chain of	Custody		OC No: 10-58284-5955 age:	.1
Client Contact Mr. James Marolda	Phone:					Veyan	dt@et.e	eurofinsu	s.com		K	JY	Page 1 of 2	
Company			PWSID:		T			A	-1	Barre			Job#	
Brown and Caldwell	Due Date Requeste	nd:			7 .		Т	Ana	alysis	Reque	Sted		Preservation Cod	es:
Address: 500 North Franklin Turnpike Suite 306	Due Date Neducas										1		A - HCL	M - Hexane
City;	TAT Requested (da		1										B - NaOH	N - None O - AsNaO2
Ramsey	1 5+	andas	9			8					$ \cdot $		C - Zn Acetate D - Nitric Acid	P - Na2O4S Q - Na2SO3
State, Zip: NJ, 07446	Compliance Project	t: A Yes	Δ Νο			1							E - NaHSO4 F - MeOH	R - Na2S2O3
Phone:	PO#:					8				1 1		1	G - Amchior	S - H2SO4 T - TSP Dodecahydrate
201-574-4713(Tel)	153201 WO#				- 5	8	1						H - Ascorbic Acid I - Ice	U - Acetone V - MCAA
Email: jmarolda@brwncald.com					5	3							J - DI Water K - EDTA	W - pH 4-5
Project Name	Project #: 41002571												L - EDA	Y - Trizma Z - other (specify)
Patchogue, NY Site: O \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	SSOW#:				-	ı ş					$ \cdot $		Other:	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Sile Patchoque MGP					4	PA				1 1			10	
			Sample	Matrix		8270D_SIM - 16 PAHs	置		-		1 1 1		eg E	
			Type	(Wounter, Sesolid,		S	8260C - BTEX			1 1			2	
	Comments Bots	Sample	(C=comp,	O-was ta/oil,		2700	2600						Special in	structions/Note:
Sample Identification	Sample Date	Time	G=grab)	BT=Tissue, A=Air		-	60						Special III	su dedolis/Note.
MU-1-20220614	6/14/22	1406	6	6 N	NI	iX	X					TT		· ·
1012 104 2020011	1-11-11	17	1		NK	\rightarrow	+	++	_					
MW-105-20220614	1-1/-	1506	6	6W		_	X		-			++		
FB-20220614	W	1545	6	DI	NN	X	X							
MW-75-20220615	6/15/22	1902	6	6W	N N	υX								
	0/13/00	T - 1	1/2			2 X	/ /	\dashv		\vdash			MS/M	CD
MU-145-20220615 (MS/MSD)		1001	6	6W	-	11:			+		+++		, 113/11	317
MU-125-20220615		11126	6	6W	NI	V /	(X)	\perp						
MH-12D-20220615		1206	6	6W	NN	JI X								
MW-85-20220615		1419	6	6W	WI	VX	X						1	
		1506	6	6W	WA	1	X							
My - 115 - 20220615	6/11/20		1	6W	2	3 V	X				+++			
MW-45-20220616	6/16/22	0809	6		10/	31	 	+	+		+++	++		
MW-3-20220616	l V	0851	<u> </u>	16W	10/1	VIV.	-141		,		1		rately and language them.	l month)
Possible Hazard Identification									ree may	De asse	osal By Lab	npies are i	retained longer than 1 Archive For	Months
Non-Hazard Flammable Skin Imitant Poi				3/	-			To Client	Remul	rements	osai by Lad			Monuis
Deliverable Requested: I, II, III, IV, Other (specify)	DEC C	AT B					111300	cuons/Qc	o requi	cincina.			EDD	
Empty Kit Relinquished by		Date:			Time	_					Method of S			
Relinquished by Hay walt	Date/Time: /22	110	16	Company	-Com	1	ceived by					Date/Time:		Company
Reffigushed by	GallyTime:			Company	11/1	_	ceived by					Date/Time:		Company
Antonio Velazquez HIIII	6/16/22	15L	2	18C		0.0	anilli de					Data/Time:-		Company
Relinquished by	Dale/Time:	•		Company		دا	ceit/ed by	$\sim \nu$	~			617-	-22 1041	Company
Custody Seals Intact: Custody Seal No.:	011 111	500	-			Co	oler Tem	perature(s)	°C and O	ther Rema	rks: - 2	0		
(Δ Yes) Δ No	24, 14:	306)		- 10					0	14- 2	/ 0		Ver: 06/08/2021
CIAH	•		_	ana 10 a	- 4 - 4 -									C/20/2022

М	~
ш	

Rossible Hazard Identification

Empty Kit Relinquished by

Custody Seals Intact:

△ Yes △ No

Relinquished by: Relinquished by:

Non-Hazard Flammable

Deliverable Requested: I, II, III, IV, Other (specify)

Skin Imitant

Custody Seal No .:

Client: Brown and Caldwell

Job Number: 410-88035-1

Login Number: 88035 List Source: Eurofins Lancaster Laboratories Environment Testing, LLC

List Number: 1

Creator: Metzger, Katherine A

Question	Answer	Comment
The cooler's custody seal is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable (=6C, not frozen).</td <td>True</td> <td></td>	True	
Cooler Temperature is recorded.	True	
WV: Container Temperature is acceptable (=6C, not frozen).</td <td>N/A</td> <td></td>	N/A	
WV: Container Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	False	Refer to Job Narrative for details.
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses.	True	
Is the Field Sampler's name present on COC?	True	
Sample custody seals are intact.	True	
VOA sample vials do not have headspace >6mm in diameter (none, if from WV)?	True	

6/30/2022 (Rev. 1)

Appendix C: Data Validator Qualifications

Experience Summary

Jaclyn Lauer started at Brown and Caldwell in the Columbia, SC office working with infrastructure, GIS, and condition asset management for municipal water and wastewater entities including sewer system evaluation studies. She then moved to the Atlanta, GA office where she worked many private sector clients and gained experience in data evaluation and assessment, compliance and permitting, project management, local limits evaluation studies, and database management. Ms. Lauer now works remotely in Lander, WY on many projects nationwide. In addition, she has led treatability laboratory studies and assisted in compliance reporting for a wide variety of clients. While at Clemson, she worked in the environmental laboratory for two years.

Assignment

Senior Engineer

Education

B.S. Environmental Engineering, Clemson University 2013

M.S. Environmental Engineering, Clemson University 2014

Clemson, SC

Registration

P.E., South Carolina #34670

Experience

5 years

Joined Firm

2014

Relevant Expertise

- Data Evaluation
- Data Validation
- Data Usability
- Compliance and Permitting
- Infrastructure
- Water/wastewater Process Design
- GIS
- Field Work
- Mobile Data Collection

Memberships

 American Water Works Association (AWWA)

Trainings

- HAZWOPER 40 Hour
- Confined Space Certified
- Industrial Hygiene Health and Safety Certified
- Wetland Delineation Certified

Publications

 Lauer, Jaclyn, "The Use of Oxidants for NDMA Precursor Deactivation in Wastewater Treatment" (2014). All Theses. Paper 1905. http://tigerprints.clemson.edu/ all_theses/1905

Data Validation and Verification, Nationwide

Multiple On-going projects. Provides data validation for level I through IV laboratory reports including air, surface water, groundwater, soil, and soil gas samples. Verification, usability, and lab data management are provided for specialized projects. Provides training and mentorship to mid-level employees for data analysis. Trainings specifically for Organics and Inorganics along with PFAS and Explosives.

Environmental

Various Sampling, Multiple Clients, GA, FL, AL, OH, and SC

Field Scientist and Field Manager. Duties involve the sampling of air, surface water, groundwater, and subsurface at both hazardous and non-hazardous waste sites for biological, chemical, and physical parameters, and the coordination and safety of said sampling events. Conducted daily health and safety meetings discussing potential hazards of each site and summarizing health and safety plans to internal staff and external subcontractors. Field methods for collecting subsurface samples have included direct push drilling, hollow-stem augering, and various groundwater sampling techniques.

Ordot Landfill Closure, Guam

Project Engineer. Responsibilities include aiding in laboratory management. This includes sample orders, report validation, database management, and data usability. Also, assisted in establishing background concentrations and calculations. [2018 to present]

Vulcan Project Management, Georgia

Project Engineer. Responsibilities include aiding in on-call services for Vulcan for compliance and permitting, Stormwater, site surveying, and environmental assessments. [2016 to present]

Project Manager. Worked for the Vulcan Stockbridge Facility in Stockbridge, Georgia on a movie set to help develop an environmentally safe way to remove fake snow from the quarry pit. Responsibilities include managing the cleanup team and project and working with Vulcan and the client, Marvel, to ensure the product was removed and reused. [2017]

Project Engineer. Responsibilities include updating all SWPPPs for each plant in the state of Georgia. This included updating maps and reports, site inspections, and dye testing. [2017]

Walmart Environmental Site Inspections, Multiple Locations, Southeastern United States

Site Inspector. Responsibilities include Nightly auditing for ongoing construction at Walmart across the Southeast. Audits included interior and

exterior environmental, health, and safety inspections working with the site's general contractor. [2016 to 2017]

Groundwater Sampling, Former Manufactured Gas Plant, Confidential Client, Jacksonville, Florida Project Engineer. Sampling of the groundwater for chemical and physical parameters, and the coordination safety of sampling events, and LNAPL and DNAPL delineation. Conducted daily health and safety meetings discussing potential hazards of each site and summarizing HASPs to internal staff and external subcontractors. Field methods included using peristaltic pumping to effectively collect samples.

Wetland Delineations and Stream Assessments, Multiple Locations, Southeastern United States Project Manager. Conducted routine delineations of wetlands on properties ranging from 1 to 880 acres utilizing U.S. Army Corps of Engineers (USACE) protocols. Multiple project sites located in Georgia, Tennessee, South Carolina, Alabama, and Florida. [2017–Present]

Well Development, Groundwater Investigation, Oversight, Soil Investigation and Vapor Intrusion Sampling, Confidential Client, Covington, Georgia

Project Engineer. Well development of both on site and residential monitoring wells using field methods that include peristaltic pumping, geo-sub pumping, and waterra pumping. Conducted vapor intrusion sampling in residential houses using Summa canisters, interacting with residents. [KM Fountain Inn SC Environmental,

HMTF Site Closure, University of Georgia, Athens, Georgia

Project Engineer. Collected soil samples with a hand auger, following careful sample collection methods and decontamination methods. Provided oversight for decontamination and cleanup of facility then verified with wipe sampling following sample collection methods. Helped draft the closure report and aided in quality control of the laboratory data. Provided follow up sampling and decontamination including wipe and soil sampling. [2016 to present]

Industrial Water Reuse

Start-Up and Compliance Services, Confidential Pharmaceutical Client, Georgia

Process Engineer. Jaclyn provided on-demand regulatory compliance support and WWTP start-up services and a Covington, Georgia pharmaceutical facility. This includes creation and updates to the Standard Operating Procedure, and preparation of an O&M manual and operator training for the wastewater pretreatment system, designed and constructed by BC. Jaclyn spent time onsite performing inspections and aiding facility operators.

Reclaimed Water POTW, Confidential Refinery, Texas

Process Engineer. Conducted a study to consider using 4 MGD of POTW effluent from the city's WWTP. Responsibilities include the assessment for the addition of disinfection at the refinery including types of disinfection, location, and design. Additionally, designed and performed bench scale breakpoint chlorination and THM formation study to assess the chlorine demand and formation of THM in the effluent POTW. The main task for disinfection with chlorine is to combat peak day ammonia (5 ppm) bleed through from the POTW needs to be treated to <0.1 ppm and control water quality from the city's POTW. [BC Project # 146640]

Municipal Wastewater

Calculation and Evaluation of Local Limits, Fulton County Department of Public Works, Cherokee County Water & Sewer Authority, and Dekalb County Department of Watershed Management, Georgia

Project Engineer. Performed all data gathering, calculations, and regulatory review of the local limits developed for the wastewater treatment facilities in Dekalb, Fulton, and Cherokee Counties. For Fulton County, Local limits were individually developed for Johns Creek, Big Creek, and Camp Creek to review the old limits for industrial pretreatment. For Dekalb County, reviewed industrial and commercial data to determine source of FOG and developed recommendations to address sewer corrosion. For Cherokee County, reviewed scenarios for anticipated growth and calculated local limits that would allow for such growth.

City of Flagstaff, Local Limits Development and Pretreatment Program Assessment

Project Engineer. Conducted an interim Industrial Pretreatment Local Limits Evaluation to assess current limits for BOD and TSS to determine whether the City could accommodate additional industrial wastewater from breweries. Developed recommendations for future limits to protect the City's facilities but not limits industrial users.

HRSD W07.6 Regionalized Rehab Program, HRSD, Virginia Beach, Virginia

Project Engineer. Responsibilities includes development of rehabilitation scopes, cost estimates, post-rehab I/I reduction estimates, and adjustment of hydrologic parameters in selected rehabilitation catchments in the HRSD service area. The Hampton Roads Sanitation District (HRSD) has taken regional responsibility to implement the EPA/Virginia DEQ mandated wet weather management plan (RWWMP), including identification and rehabilitation of cost-effective inflow/infiltration sources [BC Project # 146162]

Rocky Branch Basin SSES, City of Columbia, Columbia, South Carolina

Project Engineer. Responsibilities include providing technical engineering support to the City of Columbia for a Sewer System Evaluation Study (SSES) of a portion of the City's sanitary sewer system to identify problems that may lead to sanitary sewer overflows (SSOs). This includes investigations that are intended to identify structural, operations and maintenance, and infiltration and inflow (I/I) related problems. A full update to the City of Columbia's GIS will be provided at the end of the assessment. The intent of this project is to meet the requirements of the Continuing Sewer Assessment Program (CSAP) and the Infrastructure Rehabilitation Program (IRP) which are components of the Consent Decree under which the City is performing this work.

Appendix D: Data Usability Summary Report

DATA USABILITY SUMMARY REPORT PATCHOGUE FORMER MGP SITE

Client: Brown and Caldwell, Albany, New York

SDGs: 410-88035-1

Laboratory: Eurofins Lancaster Laboratories, Lancaster, Pennsylvania

Site: Patchogue, NY Date: August 1, 2022

Laboratory Sample ID	Matrix
410-88035-1	Groundwater
410-88035-2	Groundwater
410-88035-3	Water
410-88035-4	Groundwater
410-88035-5	Groundwater
410-88035-6	Groundwater
410-88035-7	Groundwater
410-88035-8	Groundwater
410-88035-9	Groundwater
410-88035-10	Groundwater
410-88035-11	Groundwater
410-88035-12	Groundwater
410-88035-13	Groundwater
410-88035-14	Groundwater
410-88035-15	Trip Blank
	410-88035-1 410-88035-2 410-88035-3 410-88035-4 410-88035-5 410-88035-6 410-88035-7 410-88035-8 410-88035-9 410-88035-10 410-88035-11 410-88035-12 410-88035-13 410-88035-14

Data validation was performed on the analytical data for fifteen (15) samples collected on June 14 through 16, 2022 by Brown and Caldwell associates at the Patchogue Site in New York. The samples were analyzed under the Environmental Protection Agency (USEPA) "Volatile Organic Compounds by Gas Chromatography/ Mass Spectrometry (GC/MS), SW-846 Method 8020C", August 2006, "Test Methods for Evaluating Solid Wastes, SW-846 Method 8270D (SIM), February 2007" and "Test Methods for Evaluating Solid Wastes, SW-846 Method 3510C, Rev 3", December 1996. Specific method references are as follows:

<u>Analysis</u>
Volatile Organic Compounds (VOCs)

<u>Method References</u>
USEPA SW-846 SW8260C

Semi Volatile Organic Compounds (SVOCs) USEPA SW-846 SW8270D

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods and the USEPA Region II Data Review Standard Operating Procedures (SOPs) as follows:

 SOP Number HW-34a, Revision 0, July 2015, Trace Volatile Data Validation:

- SOP Number HW-35a, Revision 0, June 2015, Semi-volatile Data Validation; and
- The reviewer's professional judgment.

The following items/criteria were reviewed for this report:

- Data Completeness
- Holding times and sample preservation
- Field Duplicate Accuracy
- · Internal Standard Area and RT
- Surrogates
- Laboratory Control Sample (LCS) recoveries
- Matric Spike and Matrix Spike Duplicate Samples
- Method and field blank contamination
- Initial and continuing calibration summaries
- Compound Quantitation
- Reporting Limits
- Sample comments and Quality Control Summaries

Overall Usability Issues:

Overall, the data is acceptable for the intended purposes. Analytical issues were found with headspace preservation, duplicate comparisons, and surrogate recoveries. Associated sample results are appropriately qualified and are usable for intended purpose, with the exception of sample MW-7S-20220615 in the VOA vials which had some rejections for not meeting headspace preservation requirements. Although the data are rejected, the data can be used for comparison purposes since results align with historical data.

Holding Times

Holding times were achieved for all analyses with the exception of MW-3-20220616.
Sample MW-3 was re-analyzed two times outside of hold time to achieve surrogate
results within control limits. The first two analyses are used for comparison purposes
and are not reportable. The final analysis is used for reporting purposes and is
qualified as estimated, J/UJ, reason code 1.

Field Duplicate Accuracy

 One duplicate was collected for this dataset. DUP-20220616 is the sample duplicate for MW-3-20220616. All relative percent differences were within control limits with the exception of total xylenes. Since parent and duplicate results are less than five times the method detection limits, no qualification is required.

Internal Standard Areas

All samples exhibited acceptable internal standard values.

Surrogates

 All samples exhibited acceptable surrogate recovery values except for sample MW-3-20220616 for the initial analysis. The initial analysis is not reportable and no qualification is required.

Laboratory Control Samples

 All laboratory control samples and laboratory control sample duplicated exhibited acceptable recovery values and relative percent differences.

Matric Spike and Matrix Spike Duplicate (MS/MSD) Samples

• The MS/MSD samples were analyzed on MW-14S-20200616, and percent recoveries are within acceptable limits.

Method, Trip, and Field Blanks

- The method blanks were free of contamination.
- The trip blank was free of contamination.
- The field blank was free of contamination.

Initial Calibration

• All recoveries and/or correlation coefficient criteria were met.

Continuing Calibration

- All Percent Drift criteria were met.
- All recoveries and/or correlation coefficient criteria were met.

Compound Quantitation

 All sample detections detected above the MDL and below the RL are appropriately qualified as estimated, J, by the laboratory.

Reporting Limits

- Samples MW-11S-20220615, MW-4S-20220616, MW-13S-20220616, and DUP-20220616 were diluted due to elevated SVOC concentrations. Elevated reporting limits are provided.
- All other laboratory reporting limits were met.

Please contact the undersigned if you have any questions or need further information.

Signed:

7 Dated: August 1, 2022

Jaclyn Lauer, P.E.

Senior Staff Engineer and Validator

Brown and Caldwell

Signed:

Couy & Strauss Dated: August 1, 2022

Corey Strauss

Senior Staff Geologist and Validator

Brown and Caldwell

Data Qualifiers

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected above the sample reporting limit; and the reporting limit is approximate.
- U = The analyte was analyzed for but was not detected above the method detection limit.
- R = The sample results is rejected due to serious deficiencies. The presence or absence of the analyte cannot be verified.

Reason Codes

- 1 Holding time violation
- 2 Method blank contamination
- 3 Surrogate recovery
- 4 MS/MSD recovery
- 5 MS/MSD precision outside limits
- 6 LCS recovery
- 7 Field blank contamination
- 8 Field duplicate precision outside limits
- 9 Other deficiencies (including cooler temperature)
- A Absence of supporting QC
- S ICV, CCV or column performance check problem
- Y Initial and continuing calibration blank problem
- M Interference check samples problem
- O Post digestion spike outside of 85-115%
- F MSA correlation coefficient < 0.995, or MSA not done
- G Serial dilution problem
- K DFTPP or BFB tuning problem
- Q Initial calibration problem
- X Internal standard recovery problem
- V Second source standard calibration verification problem
- L Low bias
- Z Retention time problem
- N Counting time error (radionuclide chemistry)
- W Detector instability (radionuclide chemistry)
- C Co-elution of compounds
- E Value exceeds linear calibration range
- I Interferences present during analysis
- T Trace level compound, poor quantitation
- P 1C/2C precision outside limits
- B LCS/LCSD precision outside limits
- D Lab Dup/Rep precision outside limits
- H High bias

Appendix E: Evaluation of Potential Impact to River from Site Constituents in Groundwater – 2020 Data

Appendix F

Evaluation of Potential Impact to River from Site Constituents in Groundwater Patchogue Former MGP Site Patchogue, New York

As described in the First Quarter 2020 Groundwater Monitoring Report, some potentially MGP-related constituents were detected in the shallow groundwater (i.e., the upper ±18 feet) in the vicinity of the ISS mass during the first groundwater monitoring event following implementation of the site remedy. It is expected these constituents are a result of the short-term disturbance of the subsurface that occurred during implementation of the ISS and, their presence is temporary. Shallow groundwater generally flows from northwest to the south and southeast across the Site toward the Patchogue River (see Figure F-1 for a depiction of shallow groundwater flow). The concentrations of most of the constituents that were detected and potentially mobile in the dissolved phase in groundwater (benzene, ethylbenzene, xylenes and naphthalene) were below surface water quality criteria listed in the New York State Ambient Water Quality Standards and Guidance Values (NYSDEC, June 1998 with Addenda dated April 2000 and June 2004) that are applicable to the Patchogue River (the portion of the Patchogue River proximal to the Site is classified as a Class C water body per 6 NYCRR Part 897). Therefore, they do not have the potential to impact the river. However, the concentration in groundwater of three potentially mobile constituents (acenaphthene, fluorene and pyrene) were slightly above their respective applicable surface water quality criteria. Although it was not anticipated that these constituent concentrations would result in an impact to surface water quality if they discharged to the river, the following analysis was conducted to confirm this.

An analysis was conducted to assess the potential for discharge of site-related constituents in shallow groundwater to impact water quality in the Patchogue River. The evaluation was conducted by estimating the rate at which a mass of site-related constituents, dissolved in groundwater, may be contributing to the surface water in the Patchogue River (i.e., the mass flux of constituents from groundwater to surface water). This approach is consistent with that described in the document entitled "Groundwater Remediation Strategies Tool" (American Petroleum Institute Publication 4730, December 2003). The equation for calculating the mass flux of a constituent is:

$mf = \Sigma C_i q_i A_i$

Where: $mf = total mass flux of dissolved constituent from the source (<math>\mu g/sec$)

 C_i = concentration of the constituent (µg/mL=µg/cm³)

q_i = specific discharge through the flow area (cm/sec) where: q_i=Ki, with K= hydraulic conductivity (cm/sec) and i=hydraulic gradient (cm/cm)

 A_i = flow area perpendicular to flow (cm²) where: A_i =(L)(b), with L=width of constituent plume perpendicular to flow and b=plume thickness

In applying this evaluation to the Site, an estimate of mass flux of a constituent (in µg/sec) was calculated shallow groundwater. The mass flux for the shallow groundwater was calculated across a cross-sectional flow area positioned at the downgradient side of the former MGP site, aligned perpendicular to groundwater flow (which in this case is typically parallel or sub-parallel to the shore line). The vertical dimension of the flow area is equal to the plume thickness (b) within the shallow groundwater. The horizontal dimension of the flow area, L, is equal to the width of the constituent plume, which is based on the isoconcentration contours developed from the results of the March 2020 sampling event (see Figures F-2 through F-4). The concentration of site constituents in the Patchogue River resulting from groundwater discharge was estimated using the following equation:

 $C_R = mf_{sgw}/D_R$

Where: C_R = Concentration of constituent in the river (μ g/L)

 mf_{sgw} = Mass flux to the river from shallow groundwater (µg/s)

 D_R = Patchogue River volumetric flow (L/s)

To address some of the uncertainties in this evaluation, conservative assumptions were made in the above-described calculations which result in river water concentration estimates that are biased high. These assumptions are as follows:

- The hydraulic gradient (i) of groundwater is variable across the Site and thus, the highest hydraulic gradient value was used in the calculation. The larger the value of i, the greater the calculated value of mass flux.
- The plume thickness (b) was estimated conservatively by using the distance from the top of the water table to the top of the well screen of a deeper well at a well couplet, yet the actual plume thickness may be somewhat less, as site constituents were either not detected or detected at very low levels in the deeper wells positioned adjacent to the river. The larger the value of b, the greater the calculated value of mass flux.
- The river volumetric flow value used to calculate in river concentrations (11.2 ft³/s or 317 L/s) was derived using a 7Q10 flow analysis (the lowest 7-day average flow that occurs, on average, once every 10 years) for the period April 1, 1958 through March 31, 1968 using data from a USGS river gauging station proximal the Site (USGS 01306000, Patchogue River at Patchogue New York). Thus, it was assumed for this estimate that the flow rate in the river is equal to that during periods of very low flow, and the lower the assumed river flow, the greater the estimated concentration in the river water. For comparison, the mean river flow rate at the same river gauging location using data from 1945 to 1976 is 20.4 ft³/s (579 L/s). Table F-1 provides the data used to determine the 7Q10 flow in the Patchogue River. Attachment F-1 presents the data plotted on log probability paper and the resultant 7Q10 flow value.

To screen for potential impacts to the river, the estimated concentrations of acenaphthene, fluorene and pyrene were developed using the above-described method and compared to the New York State Ambient Water Quality Standards and Guidance Values (NYSDEC, June 1998 with Addenda dated April 2000 and June 2004). Listed in the table below are standards and guidance values for acenaphthene, fluorene and pyrene that are applicable to the various classes of fresh water.

Fresh Surface Water Standards and Guidance Values

Substance	Water Class (per 6NYCRR Part 701)	Standard (µg/l)	Guidance Value (µg/l)	Protection for:
Acenaphthene	A, A-S, AA, AA-S, B, C		5.3	Fish propagation
	A, A-S, AA, AA-S, B, C, D		48	Fish survival
	A, A-S, AA, AA-S	20		Aesthetics
Fluorene	A, A-S, AA, AA-S	S		Drinking water source
	A, A-S, AA, AA-S, B, C		0.54	Fish propagation
	A, A-S, AA, AA-S, B, C, D		4.8	Fish survival
Pyrene	A, A-S, AA, AA-S		50	Drinking water source
	A, A-S, AA, AA-S, B, C		4.6	Fish propagation
	A, A-S, AA, AA-S, B, C, D		42	Fish survival

Attachments F-2 through F-4 contain the calculations and results for each of these constituents. The estimated concentrations in the Patchogue River resulting from site groundwater impacts are as follows:

- Acenaphthene = 0.0033 μg/L
- Fluorene = $0.00050 \, \mu g/L$
- Pyrene = 0.00127 µg/L

These conservatively-estimated (i.e., biased high) concentrations are three orders of magnitude below the surface water standards and guidance values listed above, including the lowest standard applicable to Class C surface waters. Also, the estimated concentration of fluorene is below the analytical laboratory detection limits for this constituent. Based on the evaluation conducted, site-related constituents in shallow groundwater do not impact surface water quality in the Patchogue River.

Tables

TABLE F-1 SUMMARY OF DATA USED TO CALCULATE 7Q10 FLOW IN PATCHOGUE RIVER PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

Water Year ⁽¹⁾	Low Flow (ft ³ /s)	Rank	Probability
1961	20.1	1	0.091
1958	19.1	2	0.182
1960	16.9	3	0.273
1962	16.6	4	0.364
1959	16.0	5	0.455
1967	14.4	6	0.545
1964	13.6	7	0.636
1965	12.9	8	0.727
1963	12.4	9	0.818
1966	11.1	10	0.909

Notes:

 $\overline{(1)}$ - 7Q10 flow (ft³/s) calculated using data from a USGS river gauging station (USGS 01306000 PATCHOGUE RIVER AT PATCHOGUE NY), for period 4/1/1958 through 3/31/1968.

ft3/s - cubic feet per second

Figures

Brown AND Caldwell

153021

DATE: May 6, 2020

PATCHOGUE FORMER MGP SITE VILLAGE OF PATCHOGUE, NEW YORK

MARCH 17, 2020

Brown AND Caldwell

153021

DATE: May 6, 2020

NATIONAL GRID PATCHOGUE FORMER MGP SITE VILLAGE OF PATCHOGUE, NEW YORK ACENAPHTHENE IN GROUNDWATER
MARCH 2020

F-2

Brown AND Caldwell

153021

DATE: May 6, 2020

NATIONAL GRID
PATCHOGUE FORMER MGP SITE
VILLAGE OF PATCHOGUE, NEW YORK

FLUORENE IN GROUNDWATER
MARCH 2020

F-3

Brown AND Caldwell

153021

DATE: May 6, 2020

PATCHOGUE FORMER MGP SITE
VILLAGE OF PATCHOGUE, NEW YORK

PYRENE IN GROUNDWATER MARCH 2020

Attachments

ATTACHMENT F-2 MASS FLUX CALCULATIONS - ACENAPHTHENE PATCHOGUE RIVER

Mass Flux Calculation

Enter site data in yellow highlighted cells

Acenaphthene (M	l <mark>arch 2</mark>	020)	Figure No.	See Figure F-2
mf =		kiA	* C	
Where:		k I A	= mass flux, µg/s = hydraulic conductivity, cm/s = hydraulic gradient, dimensionless = cross-sectional area, cm ^{2(L+b)} = (µg/L)/1000=µg/cm ³	\$

Shallow Groundwater Flux

0.1-1 Contour

				Contour		Segment	
k =	6.1E-03 hydraulic con	ductivity, cm/s	Geometric mean of PDI slug tests for shallow water table wells	Interval	Geomean	Length	Thickness
i =	0.013 hydraulic grad	dient, dimensionless	Measured in vicinity of selected contours	0	.1		
C=	0.316227766 µg/L=	0.000316228 µg/cm ³	Geometric mean concentration between selected contours		1 0.32	36	18
L=	36 ft =	1097.28 cm	Length of segment between selected contours [C]	:	10 3.16	90	18
b =	18 ft =	548.64 cm	Saturated thickness	:	10.95	45	18
mf=	1.5E-02 μg/s	4.8E-01 g/yr	0.00105 lbs/yr				
ur							
k =	6 1E-03 hydraulic con	ductivity cm/c	Geometric mean of DDI clud tests for shallow water table wells				

1-10 Contour

k = i =	6.1E-03 hydraulic con 0.013 hydraulic grad	• •	Geometric mean of PDI slug tests for shallow water table well Measured in vicinity of selected contours
C=	3.16 µg/L=	0.003162278 µg/cm ³	Geometric mean concentration between selected contours
L=	90 ft =	2743.2 cm	Length of segment between selected contours [C]
b =	18 ft =	548.64 cm	Saturated thickness
mf =	3.8E-01 µg/s	1.2E+01 g/yr	0.0262 lbs/yr

10-12 Contou

ontour			
k =	6.1E-03 hydraulic cond	uctivity, cm/s	Geometric mean of PDI slug tests for shallow water table wells
i =	0.013 hydraulic gradi	ent, dimensionless	Measured in vicinity of selected contours
C=	10.95 μg/L=	0.010954451 µg/cm ³	Geometric mean concentration between selected contours
L =	45 ft =	1371.6 cm	Length of segment between selected contours [C]
b =	18 ft =	548.64 cm	Saturated thickness
mf =	6.5E-01 µg/s	2.1E+01 g/yr	0.045 lbs/yr
mf _{sgw} =	1 μg/s	33 g/yr	0.1 lbs/yr

River Concentration

C_R =

0.0033 µg/L

Where:

C _R =	mf _{sgw}				
	D_R	_			
	D _R =	Patchogue River flow, L/s		11.2	$7Q10 \ \text{flow (ft}^3/\text{s) calculated using data from a USGS river gauging station (USGS)}$
	mf _{sgw =}	Shallow groundwater flux	See above		01306000PATCHOGUERIVERATPATCHOGUENY),for period4/1/1958through
	D _R =	11.2 $ft^3/s =$	317 L/s		

ATTACHMENT F-3 MASS FLUX CALCULATIONS - FLUORENE PATCHOGUE RIVER

Mass Flux Calculation

Enter site data in yellow highlighted cells

Fluorene (March 2020)		Figure No.	See Figure F-3
mf =	kiA	* C	
Where:	mf =	mass flux, µg/s	
	k =	hydraulic conductivity, cm/s	
		hydraulic gradient, dimensionless	
	A =	cross-sectional area, cm ^{2 (L * b)}	
	C =	$(\mu g/L)/1000 = \mu g/cm^3$	

Shallow Groundwater Flux

0.1-1 Contour

					Contour			Segment	
k =	6.1E-03	hydraulic co	nductivity, cm/s	Geometric mean of PDI slug tests for shallow water table wells	Interval	Ge	omean	Length	Thickness
i =	0.013	hydraulic gr	adient, dimensionless	Measured in vicinity of selected contours		0.1			
C=	0.316227766	μg/L=	0.000316228 µg/cm ³	Geometric mean concentration between selected contours		1	0.32	90	18
L=	90	ft =	2743.2 cm	Length of segment between selected contours [C]		2	1.41	65	18
b =	18	ft =	548.64 cm	Saturated thickness					
mf =	3.8E-02	μg/s	1.2E+00 g/yr	0.00262 lbs/yr					
1-2 Contour									
k =	6.1E-03	hydraulic co	nductivity, cm/s	Geometric mean of PDI slug tests for shallow water table wells					
i =	0.013	hydraulic gr	adient, dimensionless	Measured in vicinity of selected contours					
C=	1.41	μg/L=	$0.001414214 \mu g/cm^3$	Geometric mean concentration between selected contours					
L =	65	ft =	1981.2 cm	Length of segment between selected contours [C]					
b =	18	ft =	548.64 cm	Saturated thickness					
mf =	1.2E-01	μg/s	3.8E+00 g/yr	0.0085 lbs/yr					
mf _{sgw} =	0	µg/s	5 g/yr	0.0 lbs/yr					

River Concentration

C_R = mf_{sgw}
D_R

Where:

D_{R =} Patchogue River flow, L/s mf_{sgw =} Shallow groundwater flux

11.2 See above 7010 flow (ft $^3/s$) calculated using data from a USGS river gauging station (USGS 01306000 PATCHOGUE RIVER AT PATCHOGUE NY), for period 4/1/1958 through

 D_{R} 11.2 ft³/s = 317 L/s

C_{R=} 0.00050 µg/L

ATTACHMENT F-4 MASS FLUX CALCULATIONS - PYRENE PATCHOGUE RIVER

Mass Flux Calculation

Enter site data in yellow highlighted cells

Pyrene (March 2020)	Figure No.	See Figure F-4
mf =	kiA * C	
Where:	mf = mass flux, µg/s	
	k = hydraulic conductivity, cm/s	
	I = hydraulic gradient, dimensionles	s
	A = cross-sectional area, cm ^{2 (L*b)}	

Shallow Groundwater Flux

0.1-1 Contour

					Contour			Segment	
k =	6.1E-03 h	hydraulic condu	uctivity, cm/s	Geometric mean of PDI slug tests for shallow water table wells	Interval	Ge	omean	Length	Thickness
i =	0.013 h	hydraulic gradie	ent, dimensionless	Measured in vicinity of selected contours		0.1			
C=	0.316227766	µg/L=	0.000316228 µg/cm ³	Geometric mean concentration between selected contours		1	0.32	38	18
L =	38 f	ft =	1158.24 cm	Length of segment between selected contours [C]		5	2.24	130	18
b =	18 f	ft =	548.64 cm	Saturated thickness					
mf =	1.6E-02 µ	µg/s	5.0E-01 g/yr	0.00111 lbs/yr					
1-5 Contour									
k =	6.1E-03 l	hydraulic condu	uctivity, cm/s	Geometric mean of PDI slug tests for shallow water table wells					
j =	0.013 h	hydraulic gradie	ent, dimensionless	Measured in vicinity of selected contours					
C=	2.24 μ	μg/L=	0.002236068 µg/cm ³	Geometric mean concentration between selected contours					
L=	130 f	ft =	3962.4 cm	Length of segment between selected contours [C]					
b =	18 f	ft =	548.64 cm	Saturated thickness					
mf =	3.9E-01 ¡	µg/s	1.2E+01 g/yr	0.0268 lbs/yr					
mf _{sgw} =	0 μ	µg/s	13 g/yr	0.0 lbs/yr					

River Concentration

 $C_{R} = \frac{mf_{sgw}}{D_{R}}$

Where:

D_{R =} Patchogue River flow, L/s mf_{sgw =} Shallow groundwater flux

 $C = (\mu g/L)/1000 = \mu g/cm^3$

11.2 See above 7010 flow (ft $^3/s$) calculated using data from a USGS river gauging station (USGS 01306000 PATCHOGUE RIVER AT PATCHOGUE NY), for period 4/1/1958 through

 D_{R} 11.2 ft³/s = 317 L/s

C_{R=} 0.00127 µg/L

Appendix G

Evaluation of Potential Impact to River from Site Constituents in Groundwater Patchogue Former MGP Site Patchogue, New York

As described in the Second Quarter 2020 Groundwater Monitoring Report, some potentially MGP-related constituents were detected in the shallow groundwater (i.e., the upper ±18 feet) in the vicinity of the ISS mass during the second groundwater monitoring event following implementation of the site remedy. It is expected these constituents are a result of the disturbance of the subsurface that occurred during implementation of the ISS and, their presence is temporary. Shallow groundwater generally flows from northwest to the south and southeast across the Site toward the Patchogue River (see Figure G-1 for a depiction of shallow groundwater flow). The concentrations of most of the constituents that were detected and potentially mobile in the dissolved phase in groundwater (benzene and ethylbenzene) were below surface water quality criteria listed in the New York State Ambient Water Quality Standards and Guidance Values (NYSDEC, June 1998 with Addenda dated April 2000 and June 2004) that are applicable to the Patchogue River (the portion of the Patchogue River proximal to the Site is classified as a Class C water body per 6 NYCRR Part 897). Therefore, they do not have the potential to impact the water quality in the river. However, the concentration in groundwater of four potentially mobile constituents (acenaphthene, fluorene, naphthalene and pyrene) were above their respective applicable surface water quality criteria. Although it was not anticipated that these constituent concentrations would result in an impact to surface water quality if they discharged to the river, a mass flux analysis was conducted to confirm this. The concentrations of acenaphthene, fluorene and pyrene in the June 2020 samples were similar (within the same order of magnitude) to those in the March 2020 samples. Since the estimated surface water concentrations of these three constituents based on the mass flux analysis using the March 2020 data (see Appendix F) were three orders of magnitude below applicable surface water criteria, an additional estimation of concentrations of these constituents in the river is not necessary, and the analysis discussed herein was conducted for naphthalene only.

An analysis was conducted to assess the potential for discharge of naphthalene in shallow groundwater to impact water quality in the Patchogue River. The evaluation was conducted by estimating the rate at which a mass of naphthalene, dissolved in groundwater, may be contributing to the surface water in the Patchogue River (i.e., the mass flux of constituents from groundwater to surface water). This approach is consistent with that described in the document entitled "Groundwater Remediation Strategies Tool" (American Petroleum Institute Publication 4730, December 2003). The equation for calculating the mass flux of a constituent is:

 $mf=\Sigma C_iq_iA_i$

Where: $mf = total mass flux of dissolved constituent from the source (<math>\mu g/sec$)

 C_i = concentration of the constituent ($\mu g/mL = \mu g/cm^3$)

q_i = specific discharge through the flow area (cm/sec)

where: q_i=Ki, with K= hydraulic conductivity (cm/sec) and i=hydraulic gradient (cm/cm)

 A_i = flow area perpendicular to flow (figure cm²) where: A_i =(L)(b), with L=width of constituent plume perpendicular to flow and b=plume thickness

In applying this evaluation to the Site, an estimate of mass flux of a constituent (in μ g/sec) was calculated for shallow groundwater. The mass flux for the shallow groundwater was calculated across a cross-sectional flow area positioned at the downgradient side of the former MGP site, aligned perpendicular to groundwater flow (which in this case is typically parallel or sub-parallel to the shore line). The vertical dimension of the flow area is equal to the plume thickness (b) within the shallow groundwater. The horizontal dimension of the flow area, L, is equal to the width of the constituent plume, which is based on the isoconcentration contours developed from the results of the June 2020 sampling event (see Figure G-2). The concentration of site constituents in the Patchogue River resulting from groundwater discharge was estimated using the following equation:

 $C_R = mf_{sgw}/D_R$

Where: C_R = Concentration of constituent in the river (μ g/L)

 mf_{sgw} = Mass flux to the river from shallow groundwater (µg/s)

 D_R = Patchogue River volumetric flow (L/s)

To address some of the uncertainties in this evaluation, conservative assumptions were made in the above-described calculations which result in river water concentration estimates that are biased high. These assumptions are as follows:

- The hydraulic gradient (i) of groundwater is variable across the Site and thus, the highest hydraulic gradient value was used in the calculation. The larger the value of i, the greater the calculated value of mass flux.
- The plume thickness (b) was estimated conservatively by using the distance from the top of the water table to the top of the well screen of a deeper well at a well couplet, yet the actual plume thickness may be somewhat less, as site constituents were either not detected or detected at very low levels in the deeper wells positioned adjacent to the river. The larger the value of b, the greater the calculated value of mass flux.
- The river volumetric flow value used to calculate in river concentrations (11.2 ft³/s or 317 L/s) was derived using a 7Q10 flow analysis (the lowest 7-day average flow that occurs, on average, once every 10 years) for the period April 1, 1958 through March 31, 1968 using data from a USGS river gauging station proximal the Site (USGS 01306000, Patchogue River at Patchogue New York). Thus, it was assumed for this estimate that the flow rate in the river is equal to that during periods of very low flow, and the lower the assumed river flow, the greater the estimated concentration in the river water. For comparison, the mean river flow rate at the same river gauging location using data from 1945 to 1976 is 20.4 ft³/s (579 L/s). Table G-1 provides the data used to determine the 7Q10 flow in the Patchogue River. Attachment G-1 presents the data plotted on log probability paper and the resultant 7Q10 flow value.

To screen for potential impacts to the river, the estimated concentration of naphthalene was calculated using the above-described method and compared to the New York State Ambient Water Quality Standards and Guidance Values (NYSDEC, June 1998 with Addenda dated April 2000 and June 2004). Listed in the table below are standards and guidance values for naphthalene that are applicable to the various classes of fresh water.

Fresh Surface Water Standards and Guidance Values

Substance	Water Class (per 6NYCRR Part 701)	Standard (µg/l)	Guidance Value (µg/l)	Protection for:
Naphthalene	A, A-S, AA, AA-S, B, C		13	Fish propagation
	A, A-S, AA, AA-S, B, C, D		110	Fish survival
	A, A-S, AA, AA-S	10		Aesthetics

Attachment G-2 contains the calculations and results for this constituent. The estimated concentration of naphthalene in the Patchogue River resulting from site groundwater impacts is 0.0197 μ g/L. This conservatively-estimated (i.e., biased high) concentration is three orders of magnitude below the surface water standards and guidance values listed above, including the lowest standard applicable to Class C surface waters. Also, the estimated concentration is below the analytical laboratory detection limits for this constituent. Based on the evaluation conducted, site-related constituents in shallow groundwater do not impact surface water quality in the Patchogue River.

Tables

TABLE G-1 SUMMARY OF DATA USED TO CALCULATE 7Q10 FLOW IN PATCHOGUE RIVER PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

Water Year ⁽¹⁾	Low Flow (ft ³ /s)	Rank	Probability
1961	20.1	1	0.091
1958	19.1	2	0.182
1960	16.9	3	0.273
1962	16.6	4	0.364
1959	16.0	5	0.455
1967	14.4	6	0.545
1964	13.6	7	0.636
1965	12.9	8	0.727
1963	12.4	9	0.818
1966	11.1	10	0.909

Notes:

(1) - 7Q10 flow (ft³/s) calculated using data from a USGS river gauging station (USGS 01306000 PATCHOGUE RIVER AT PATCHOGUE NY), for period 4/1/1958 through 3/31/1968.

ft3/s - cubic feet per second

Figures

Brown AND Caldwell

153021

DATE: July 29, 2020

NATIONAL GRID PATCHOGUE FORMER MGP SITE VILLAGE OF PATCHOGUE, NEW YORK

WATER TABLE ELEVATION CONTOUR MAP JUNE 29, 2020

G-1

DATE: September 11, 2020

Attachments

ATTACHMENT G-2 MASS FLUX CALCULATIONS - NAPHTHALENE PATCHOGUE RIVER

Mass Flux Calculation

Enter site data in yellow highlighted cells

Naphthale	<mark>ene (Jun</mark> e 20	20)	Figure No.	See Figure G-2
	mf =	kiA	* C	
	Where:		mf = mass flux, μg/s k = hydraulic conductivity, cm/s	
			I = hydraulic gradient, dimensionless	
			A = cross-sectional area, cm ^{2 (L*b)}	
			$C = (\mu g/L)/1000 = \mu g/cm^3$	

Shallow Groundwater Flux

1-10 Contour

				Contour		Segment	
k =	6.1E-03 hydraulic condu	ctivity, cm/s	Geometric mean of PDI slug tests for shallow water table wells	Interval	Geomean	Length	Thickness
i =	0.014 hydraulic gradie	ent, dimensionless	Measured in vicinity of selected contours		1		
C=	3.16 µg/L=	$0.00316 \mu g/cm^3$	Geometric mean concentration between selected contours		10 3.16	66	18
L=	66 ft =	2011.68 cm	Length of segment between selected contours [C]	1	00 31.62	32	18
p =	18 ft =	548.64 cm	Saturated thickness	1	10 104.88	30	18
mf =	3.0E-01 µg/s	9.4E+00 g/yr	0.02070 lbs/yr				
10-100 Contour							
k =	6.1E-03 hydraulic conductivity, cm/s		Geometric mean of PDI slug tests for shallow water table wells				
i =	0.014 hydraulic gradient, dimensionless		Measured in vicinity of selected contours				
C=	31.62 µg/L=	0.0316 µg/cm ³	Geometric mean concentration between selected contours				
L=	32 ft =	975.36 cm	Length of segment between selected contours [C]				
b =	18 ft =	548.64 cm	Saturated thickness				
mf =	1.4E+00 μg/s	4.6E+01 g/yr	0.1003 lbs/yr				
100-110 Contour							
k =	6.1E-03 hydraulic conductivity, cm/s		Geometric mean of PDI slug tests for shallow water table wells				
i =	0.014 hydraulic gradient, dimensionless		Measured in vicinity of selected contours				
C=	104.88 μg/L=	$0.105 \mu g/cm^3$	Geometric mean concentration between selected contours				
L=	30 ft =	914.4 cm	Length of segment between selected contours [C]				
b =	18 ft =	548.64 cm	Saturated thickness				
mf =	4.5E+00 μg/s	1.4E+02 g/yr	0.312 lbs/yr				

River Concentration

Where:

mf_{sgw} =

C_R-

6 μg/s

0.0197 µg/L

197 g/yr

0.4 lbs/yr

Appendix E

Evaluation of Potential Impact to River from Site Constituents in Groundwater Patchogue Former MGP Site Patchogue, New York

As described in the Third Quarter 2020 Groundwater Monitoring Report, some potentially MGP-related constituents were detected in the shallow groundwater (i.e., the upper ±18 feet) in the vicinity of the ISS mass during the first groundwater monitoring event following implementation of the site remedy. It is expected these constituents are a result of the short-term disturbance of the subsurface that occurred during implementation of the ISS and, their presence is temporary. Shallow groundwater generally flows from northwest to the south and southeast across the Site toward the Patchogue River (see Figure E-1 for a depiction of shallow groundwater flow). The concentrations of most of the constituents that were detected and potentially mobile in the dissolved phase in groundwater (benzene and ethylbenzene) were below surface water quality criteria listed in the New York State Ambient Water Quality Standards and Guidance Values (NYSDEC, June 1998 with Addenda dated April 2000 and June 2004) that are applicable to the Patchogue River (the portion of the Patchogue River proximal to the Site is classified as a Class C water body per 6 NYCRR Part 897). Therefore, they do not have the potential to impact the river. However, the concentration of six constituents (acenaphthene, benzo(a)anthracene, fluorene, naphthalene, phenanthrene and pyrene) were detected above their respective applicable surface water quality criteria in downgradient monitoring wells proximal to the river (MW-3 and MW-4S). Although it was not anticipated that these constituent concentrations would result in an impact to surface water quality if they discharged to the river, the following analysis was conducted to confirm this. The concentrations of acenaphthene and naphthalene in the September 2020 samples were similar (within the same order of magnitude) to those in the March and June 2020 samples. Since the estimated surface water concentrations of these two constituents based on the mass flux analysis using the March and June 2020 data were three orders of magnitude below applicable surface water criteria, an additional estimation of concentrations of these constituents in the river is not necessary. However, due to increased concentrations of benzo(a)anthracene, fluorene, phenanthrene and pyrene in MW-3, an additional analysis was conducted for these constituents.

An analysis was conducted to assess the potential for discharge of site-related constituents in shallow groundwater to impact water quality in the Patchogue River. The evaluation was conducted by estimating the rate at which a mass of site-related constituents, dissolved in groundwater, may be contributing to the surface water in the Patchogue River (i.e., the mass flux of constituents from groundwater to surface water). This approach is consistent with that described in the document entitled "Groundwater Remediation Strategies Tool" (American Petroleum Institute Publication 4730, December 2003). The equation for calculating the mass flux of a constituent is:

 $mf = \sum C_i q_i A_i$

Where: mf = total mass flux of dissolved constituent from the source (µg/sec)

 C_i = concentration of the constituent ($\mu g/mL = \mu g/cm^3$)

q_i = specific discharge through the flow area (cm/sec)

where: q_i=Ki, with K= hydraulic conductivity (cm/sec) and i=hydraulic gradient (cm/cm)

 A_i = flow area perpendicular to flow (cm²) where: A_i =(L)(b), with L=width of constituent plume perpendicular to flow and b=plume thickness

In applying this evaluation to the Site, an estimate of mass flux of a constituent (in µg/sec) was calculated shallow groundwater. The mass flux for the shallow groundwater was calculated across a cross-sectional flow area positioned at the downgradient side of the former MGP site, aligned perpendicular to groundwater flow (which in this case is typically parallel or sub-parallel to the shore line). The vertical dimension of the flow area is equal to the plume thickness (b) within the shallow groundwater. The horizontal dimension of the flow area, L, is equal to the width of the constituent plume, which is based on the isoconcentration contours developed from the results of the September 2020 sampling event (see Figures E-2 through E-5). The concentration of site constituents in the Patchogue River resulting from groundwater discharge was estimated using the following equation:

 $C_R = mf_{sgw}/D_R$

Where: C_R = Concentration of constituent in the river ($\mu g/L$)

 mf_{sgw} = Mass flux to the river from shallow groundwater ($\mu g/s$)

 D_R = Patchogue River volumetric flow (L/s)

To address some of the uncertainties in this evaluation, conservative assumptions were made in the above-described calculations which result in river water concentration estimates that are biased high. These assumptions are as follows:

- The hydraulic gradient (i) of groundwater is variable across the Site and thus, the highest hydraulic gradient value was used in the calculation. The larger the value of i, the greater the calculated value of mass flux.
- The plume thickness (b) was estimated conservatively by using the distance from the top of the water table to the top of the well screen of a deeper well at a well couplet, yet the actual plume thickness may be somewhat less, as site constituents were either not detected or detected at very low levels in the deeper wells positioned adjacent to the river. The larger the value of b, the greater the calculated value of mass flux.
- The river volumetric flow value used to calculate in river concentrations (11.2 ft³/s or 317 L/s) was derived using a 7Q10 flow analysis (the lowest 7-day average flow that occurs, on average, once every 10 years) for the period April 1, 1958 through March 31, 1968 using data from a USGS river gauging station proximal the Site (USGS 01306000, Patchogue River at Patchogue New York). Thus, it was assumed for this estimate that the flow rate in the river is equal to that during periods of very low flow, and the lower the assumed river flow, the greater the estimated concentration in the river water. For comparison, the mean river flow rate at the same river gauging location using data from 1945 to 1976 is 20.4 ft³/s (579 L/s). Table F-1 provides the data used to determine the 7Q10 flow in the Patchogue River. Attachment F-1 presents the data plotted on log probability paper and the resultant 7Q10 flow value.

To screen for potential impacts to the river, the estimated concentrations of benzo(a)anthracene, fluorene, phenanthrene and pyrene were developed using the above-described method and compared to the New York State Ambient Water Quality Standards and Guidance Values (NYSDEC, June 1998 with Addenda dated April 2000 and June 2004). Listed in the table below are standards and guidance values for benzo(a)anthracene, fluorene, phenanthrene and pyrene that are applicable to Class C Fresh Water (no standards have been developed for these compounds).

Class C Fresh Surface Water Standards and Guidance Values

Substance	Water Class (per 6NYCRR Part 701)	Standard (µg/l)	Guidance Value (µg/l)	Protection for:
Benzo(a)anthracene	A, A-S, AA, AA-S, B, C		0.03	Fish propagation
	A, A-S, AA, AA-S, B, C, D		0.23	Fish survival
Fluorene	A, A-S, AA, AA-S, B, C		0.54	Fish propagation
	A, A-S, AA, AA-S, B, C, D		4.8	Fish survival
Phenanthrene	A, A-S, AA, AA-S, B, C		5.0	Fish propagation
	A, A-S, AA, AA-S, B, C, D		45	Fish survival
Pyrene	A, A-S, AA, AA-S, B, C		4.6	Fish propagation
	A, A-S, AA, AA-S, B, C, D		42	Fish survival

Attachments E-2 through E-5 contain the calculations and results for each of these constituents. The estimated concentrations in the Patchogue River resulting from site groundwater impacts are as follows:

- Benzo(a)anthracene = 0.0008 μg/L
- Fluorene = 0.003 μg/L
- Phenanthrene = $0.001 \, \mu g/L$
- Pyrene = 0.007 μg/L

These conservatively-estimated (i.e., biased high) concentrations are below the surface water standards and guidance values listed above, including the lowest standard applicable to Class C surface waters. Also, the estimated concentrations are below the analytical laboratory detection limits for these constituents. Based on the evaluation conducted, site-related constituents in shallow groundwater do not impact surface water quality in the Patchogue River.

Tables

TABLE E-1 SUMMARY OF DATA USED TO CALCULATE 7Q10 FLOW IN PATCHOGUE RIVER PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

Water Year ⁽¹⁾	Low Flow (ft ³ /s)	Rank	Probability
1961	20.1	1	0.091
1958	19.1	2	0.182
1960	16.9	3	0.273
1962	16.6	4	0.364
1959	16.0	5	0.455
1967	14.4	6	0.545
1964	13.6	7	0.636
1965	12.9	8	0.727
1963	12.4	9	0.818
1966	11.1	10	0.909

Notes:

(1) - 7Q10 flow (ft³/s) calculated using data from a USGS river gauging station (USGS 01306000 PATCHOGUE RIVER AT PATCHOGUE NY), for period 4/1/1958 through 3/31/1968.

ft³/s - cubic feet per second

Figures

153021

DATE: July 29, 2020

NATIONAL GRID PATCHOGUE FORMER MGP SITE
VILLAGE OF PATCHOGUE, NEW YORK WATER TABLE ELEVATION CONTOUR MAP SEPTEMBER, 2020

153021

DATE: November 17, 2020

NATIONAL GRID PATCHOGUE FORMER MGP SITE VILLAGE OF PATCHOGUE, NEW YORK BENZO(a)ANTHRACENE IN GROUNDWATER (μg/L) SEPTEMBER 2020

153021

DATE: November 17, 2020

NATIONAL GRID PATCHOGUE FORMER MGP SITE VILLAGE OF PATCHOGUE, NEW YORK FLUORENE IN GROUNDWATER (µg/L) SEPTEMBER 2020

SCALE: 1" = 60'

153021

DATE: November 17, 2020

NATIONAL GRID PATCHOGUE FORMER MGP SITE VILLAGE OF PATCHOGUE, NEW YORK

PHENANTHRENE IN GROUNDWATER (µg/L) SEPTEMBER 2020 FIGURE

153021

DATE: November 17, 2020

NATIONAL GRID PATCHOGUE FORMER MGP SITE VILLAGE OF PATCHOGUE, NEW YORK PYRENE IN GROUNDWATER (µg/L) SEPTEMBER 2020

Attachments

ATTACHMENT E-2 MASS FLUX CALCULATIONS - BENZO(A)ANTHRACENE PATCHOGUE RIVER

Mass Flux Calculation

Enter site data in yellow highlighted cells

Benzon(a)anthracene (September 2020)	Figure No.	See Figure E-2
mf =	kiA * C		
Where:	mf = mass flux, µg/s		
	k = hydraulic conduc	ctivity, cm/s	
	I = hydraulic gradier	nt, dimensionless	s ·
	A = cross-sectional a	area, cm ^{2 (L * b)}	
	$C = (\mu g/L)/1000 = \mu g$	g/cm ³	

Shallow Groundwater Flux

0.1-1 Contour

			Contour		Segment	
k =	6.1E-03 hydraulic conductivity, cm/s	Geometric mean of PDI slug tests for shallow water table wells	Interval	Geomean	Length	Thickness
j =	0.013 hydraulic gradient, dimensionless	Measured in vicinity of selected contours	0.1			
C=	$0.316227766 \mu g/L = 0.000316228 \mu g/cm^3$	Geometric mean concentration between selected contours	1	0.32	34	18
L=	34 ft = 1036.32 cm	Length of segment between selected contours [C]	4.8	2.19	80	18
b =	18 ft = 548.64 cm	Saturated thickness				
mf=	1.4E-02 µg/s 4.5E-01 g/yr	0.00099 lbs/yr				
our						
k =	6.1E-03 hydraulic conductivity, cm/s	Geometric mean of PDI slug tests for shallow water table wells				
i =	0.013 hydraulic gradient, dimensionless	Measured in vicinity of selected contours				

1-4.8 Contour

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
k =	6.1E-03 hydraulic cond	ductivity, cm/s	Geometric mean of PDI slug tests for shallow water table we
j =	0.013 hydraulic grad	lient, dimensionless	Measured in vicinity of selected contours
C=	2.19 µg/L=	$0.00219089 \mu g/cm^3$	Geometric mean concentration between selected contours
L =	80 ft =	2438.4 cm	Length of segment between selected contours [C]
b =	18 ft =	548.64 cm	Saturated thickness
mf =	2.3E-01 μg/s	7.3E+00 g/yr	0.0161 lbs/yr
mf _{sgw} =	0.25 μg/s	7.8 g/yr	0.017 lbs/yr

River Concentration

Where:

 $\frac{\mathsf{C}_{\mathsf{R}}=\frac{\mathsf{mf}_{\mathsf{sgw}}}{\mathsf{D}_{\mathsf{R}}}$

D_R. Patchogue River flow, L/s 11.2 7010 flow (ft³/s) calculated using data from a USGS river gauging station (USGS mf_{sov}. Shallow groundwater flux See above

 D_{R} 11.2 ft³/s = 317 L/s

 $C_{R=}$ 0.0008 μ g/L

ATTACHMENT E-3 MASS FLUX CALCULATIONS - FLUORENE PATCHOGUE RIVER

Mass Flux Calculation

Enter site data in yellow highlighted cells

Fluorene (September 2020)	Figure No.	See Figure E-3
mf = kiA Where:	* C mf = mass flux, µg/s k = hydraulic conductivity, cm/s I = hydraulic gradient, dimensionless A = cross-sectional area, cm ^{2(L+b)}	
	A = cross-sectional area, cm $C = (\mu g/L)/1000 = \mu g/cm^3$	

Shallow Groundwater Flux

mf=

1.3E-02 µg/s

0.1-1 Contour

							Contour		Segment	
k =	6.1E-03	6.1E-03 hydraulic conductivity, cm/s		conductivity, cm/s	Geometric mean of PDI slug tests for shallow water to	able wells	Interval	Geomean	Length	Thickness
j =	0.013 hydraulic gradient, dimensionless		gradient, dimensionless	Measured in vicinity of selected contours		0.1				
C=	0.316227766	μg/	L=	0.000316228 μg/cm ³	Geometric mean concentration between selected co	ntours	1	0.32	32	18
L =	32	ft	=	975.36 cm	Length of segment between selected contours [C]		10	3.16	46	18
b =	18	ft	-	548.64 cm	Saturated thickness		10	10.00	60	18

1-10 Contour

k =	6.1E-03 hydraulic cond	ductivity, cm/s	Geometric mean of PDI slug tests for shallow water table wells
j =	0.013 hydraulic grad	lient, dimensionless	Measured in vicinity of selected contours
C=	3.16 μ g/L=	0.003162278 µg/cm ³	Geometric mean concentration between selected contours
L =	46 ft =	1402.08 cm	Length of segment between selected contours [C]
b =	18 ft =	548.64 cm	Saturated thickness
mf =	1.9E-01 µg/s	6.1E+00 g/yr	0.0134 lbs/yr

4.2E-01 g/yr

10-10 Contour

0111001					
k =	6.1E-03 hydraulic condu	ctivity, cm/s	Geometric mean of PDI slug tests for shallow water table we		
j =	0.013 hydraulic gradie	nt, dimensionless	Measured in vicinity of selected contours		
C=	10.00 μg/L=	$0.01 \mu g/cm^3$	Geometric mean concentration between selected contours		
L =	60 ft =	1828.8 cm	Length of segment between selected contours [C]		
b =	18 ft =	548.64 cm	Saturated thickness		
mf =	8.0E-01 µg/s	2.5E+01 g/yr	0.0552 lbs/yr		
mf _{sgw} =	1.0 μg/s	32 g/yr	0.070 lbs/yr		

317 L/s

River Concentration

$$\frac{C_{R} = \frac{mf_{sgw}}{D_{R}}$$

Where:

D_R. Patchogue River flow, L/s

mf_{sgw*} Patchogue River flow, L/s

Shallow groundwater flux

11.2 7Q10 flow (ft³/s) calculated using data from a USGS river gauging station (USGS 01306000 PATCHOGUE RIVER AT PATCHOGUE NY), for period 4/1/1958 through

0.00093 lbs/yr

 $$D_{R\,\text{=}}$$ $$C_{R\,\text{=}}$$ $0.003~\mu\text{g/L}$

11.2 $ft^3/s =$

ATTACHMENT E-4 MASS FLUX CALCULATIONS - PHENANTHRENE PATCHOGUE RIVER

Mass Flux Calculation

Enter site data in yellow highlighted cells

Phenanthrene (Septe	mber 2020)	Figure No.	See Figure E-4
mf =	kiA * C		
Where:	mf = mass flux, µg/s	s	
	k = hydraulic cond	uctivity, cm/s	
	I = hydraulic gradi	ient, dimensionless	
	A = cross-sectiona	l area, cm ^{2 (L * b)}	
	$C = (\mu g/L)/1000=$	-μg/cm ³	

Shallow Groundwater Flux

0.1-1 Contour

				Contour		Segment	
k =	6.1E-03 hydraulic con	ductivity, cm/s	Geometric mean of PDI slug tests for shallow water table wells	Interval	Geomean	Length	Thickness
j =	0.013 hydraulic gra	dient, dimensionless	Measured in vicinity of selected contours	0.	1		
C=	0.316227766 µg/L=	0.000316228 µg/cm ³	Geometric mean concentration between selected contours		1 0.32	38	18
L=	38 ft =	1158.24 cm	Length of segment between selected contours [C]	5.	9 2.43	107	18
b =	18 ft =	548.64 cm	Saturated thickness				
mf=	1.6E-02 µg/s	5.0E-01 g/yr	0.00111 lbs/yr				
our							
k =	= 6.1E-03 hydraulic conductivity, cm/s		Geometric mean of PDI slug tests for shallow water table wells				

1-5.9 Contour

mour			
k =	6.1E-03 hydraulic con	ductivity, cm/s	Geometric mean of PDI slug tests for shallow water table we
j =	0.013 hydraulic grad	dient, dimensionless	Measured in vicinity of selected contours
C=	2.43 μg/L=	$0.002428992 \mu g/cm^3$	Geometric mean concentration between selected contours
L =	107 ft =	3261.36 cm	Length of segment between selected contours [C]
b =	18 ft =	548.64 cm	Saturated thickness
mf =	3.4E-01 µg/s	1.1E+01 g/yr	0.0239 lbs/yr
mf _{sgw} =	0.36 μg/s	11 g/yr	0.025 lbs/yr

River Concentration

$$C_{R} = \frac{mf_{sgw}}{D_{R}}$$

Where:

 $\begin{array}{ll} D_{R\, =} & \text{Patchogue River flow, L/s} \\ \text{mf}_{\text{sgw}\, =} & \text{Shallow groundwater flux} \end{array}$

11.2 See above

317 L/s

7010 flow (ft $^3/s)$ calculated using data from a USGS river gauging station (USGS 01306000 PATCHOGUE RIVER AT PATCHOGUE NY), for period 4/1/1958 through

 $D_{R} = 11.2 \text{ ft}^3/\text{s} =$

 $C_{R=}$ 0.001 μ g/L

ATTACHMENT E-5 MASS FLUX CALCULATIONS - PYRENE PATCHOGUE RIVER

Mass Flux Calculation

Enter site data in yellow highlighted cells

Pyrene (September 2	020) Figure No. See Figure E-5	
mf = Where:	kiA * C mf = mass flux, μg/s k = hydraulic conductivity, cm/s I = hydraulic gradient, dimensionless A = cross-sectional area, cm ^{2 (L*b)} C = (μg/L)/1000=μg/cm ³	

Shallow Groundwater Flux

mf=

8.0E-03 µg/s

0.1-1 Contour

						Contour		Segment	
k =	6.1E-03	nydra	aulic conductivity, cm/s	Geometric mean of PDI slug tests for shallow water to	able wells	Interval	Geomean	Length	Thickness
j =	0.013 i	nydra	aulic gradient, dimensionless	Measured in vicinity of selected contours		0.1			
C=	0.316227766	µg/L	.= 0.000316228 μg/cm ³	Geometric mean concentration between selected co	ntours	1	0.32	19	18
L =	19 f	t	= 579.12 cm	Length of segment between selected contours [C]		10	3.16	45	18
b =	18 f	t	= 548.64 cm	Saturated thickness		35	18.71	85	18

0.00055 lbs/yr

1-10 Contour

k =	6.1E-03 hydraulic cond	ductivity, cm/s	Geometric mean of PDI slug tests for shallow water table wells
j =	0.013 hydraulic grad	lient, dimensionless	Measured in vicinity of selected contours
C=	$3.16 \mu g/L =$	0.003162278 µg/cm ³	Geometric mean concentration between selected contours
L =	45 ft =	1371.6 cm	Length of segment between selected contours [C]
b =	18 ft =	548.64 cm	Saturated thickness
mf =	1.9E-01 µg/s	6.0E+00 g/yr	0.0131 lbs/yr

2.5E-01 g/yr

1-35 Contour

6.1E-03 hydraulic con	ductivity, cm/s	Geometric mean of PDI slug tests for shallow water table wells
0.013 hydraulic gra	dient, dimensionless	Measured in vicinity of selected contours
18.71 μg/L=	0.018708287 µg/cm ³	Geometric mean concentration between selected contours
85 ft =	2590.8 cm	Length of segment between selected contours [C]
18 ft =	548.64 cm	Saturated thickness
2.1E+00 μg/s	6.7E+01 g/yr	0.1464 lbs/yr
2.3 μg/s	73 g/yr	0.16 lbs/yr
	0.013 hydraulic gra 18.71 μg/L = 85 ft = 18 ft = 2.1E+00 μg/s	85 ft = 2590.8 cm 18 ft = 548.64 cm 2.1E+00 μg/s 6.7E+01 g/yr

River Concentration

Where:

 D_{R-} Patchogue River flow, L/s 11.2 Patchogue River flow, L/s 11.2 Patchogue River flow, L/s 11.2 See above 70.10 flow (ft 3 /s) calculated using data from a USGS river gauging station (USGS of 1306000 PATCHOGUE RIVER AT PATCHOGUE NY), for period 4/1/1958 through

 $D_{R} = 11.2 \text{ ft}^3/\text{s} = 317 \text{ L/s}$

 $C_{R=}$ 0.007 $\mu g/L$

Appendix E

Evaluation of Potential Impact to River from Site Constituents in Groundwater Patchogue Former MGP Site Patchogue, New York

As described in the Fourth Quarter 2020 Groundwater Monitoring Report, some potentially MGP-related constituents were detected in the shallow groundwater (i.e., the upper ±18 feet) in the vicinity of the ISS mass during the December 2020 sampling event. It is expected these constituents are a result of the short-term disturbance of the subsurface that occurred during implementation of the ISS and, their presence is temporary. Shallow groundwater generally flows from northwest to the south and southeast across the Site toward the Patchogue River (see Figure E-1 for a depiction of shallow groundwater flow). The concentrations of some of the constituents that were detected and potentially mobile in the dissolved phase in groundwater (benzene and ethylbenzene) were below surface water quality criteria listed in the New York State Ambient Water Quality Standards and Guidance Values (NYSDEC, June 1998 with Addenda dated April 2000 and June 2004) that are applicable to the Patchogue River (the portion of the Patchogue River proximal to the Site is classified as a Class C water body per 6 NYCRR Part 897). Therefore, they do not have the potential to impact the river. However, the concentration of one or more of seven constituents -- acenaphthene, benzo(a)anthracene, benzo(a)pyrene, fluorene, naphthalene, phenanthrene, and pyrene - were detected above their respective applicable surface water quality criteria in downgradient monitoring wells proximal to the river (MW-3 and MW-4S). Although it was not anticipated that these constituent concentrations would result in an impact to surface water quality if they discharged to the river, the following analysis was conducted to confirm this. The concentrations of acenaphthene, benzo(a)anthracene, fluorene, naphthalene, and pyrene in the December 2020 samples were similar (within the same order of magnitude) to those in the March, June, and September 2020 samples. Since the estimated surface water concentrations of these five constituents based on the mass flux analyses using the March, June, and September 2020 data were below applicable surface water criteria, an additional estimation of concentrations of these constituents in the river is not necessary. However, due to increased concentrations of benzo(a)pyrene and phenanthrene in MW-3 in the December 2020 samples, an additional analysis was conducted for these constituents.

An analysis was conducted to assess the potential for discharge of site-related constituents in shallow groundwater to impact water quality in the Patchogue River. Noteworthy is that including benzo(a)pyrene in this evaluation is a very conservative measure in that benzo(a)pyrene has a very low aqueous solubility, is not readily mobile in groundwater, and is unlikely to have migrated from the on-Site source area, Moreover, the detection of this constituent in the monitoring locations is likely related to the disturbance of fine or colloid sized particles during purging or sampling activities. These particles are derived from within the well or the soil adjacent to the well that become suspended into the water column of the well as a result of disturbance during purging and sampling activities.

The evaluation was conducted by estimating the rate at which a mass of site-related constituents, dissolved in groundwater, may be contributing to the surface water in the Patchogue River (i.e., the mass flux of constituents from groundwater to surface water). This approach is consistent with that described

in the document entitled "Groundwater Remediation Strategies Tool" (American Petroleum Institute Publication 4730, December 2003). The equation for calculating the mass flux of a constituent is:

 $mf = \sum C_i q_i A_i$

Where: mf = total mass flux of dissolved constituent from the source (µg/sec)

 C_i = concentration of the constituent ($\mu g/mL = \mu g/cm^3$)

q_i = specific discharge through the flow area (cm/sec) where: q_i=Ki, with K= hydraulic conductivity (cm/sec) and i=hydraulic gradient (cm/cm)

 A_i = flow area perpendicular to flow (cm²) where: A_i =(L)(b), with L=width of constituent plume perpendicular to flow and b=plume thickness

In applying this evaluation to the Site, an estimate of mass flux of a constituent (in µg/sec) was calculated for shallow groundwater. The mass flux for the shallow groundwater was calculated across a cross-sectional flow area positioned at the downgradient side of the former MGP site, aligned perpendicular to groundwater flow (which in this case is typically parallel or sub-parallel to the shore line). The vertical dimension of the flow area is equal to the plume thickness (b) within the shallow groundwater. The horizontal dimension of the flow area, L, is equal to the width of the constituent plume, which is based on the isoconcentration contours developed from the results of the December 2020 sampling event (see Figures E-2 and E-3). The concentration of site constituents in the Patchogue River resulting from groundwater discharge was estimated using the following equation:

 $C_R = mf_{sgw}/D_R$

Where: C_R = Concentration of constituent in the river (μ g/L)

 mf_{sgw} = Mass flux to the river from shallow groundwater (µg/s)

 D_R = Patchogue River volumetric flow (L/s)

To address some of the uncertainties in this evaluation, conservative assumptions were made in the above-described calculations which result in river water concentration estimates that are biased high. These assumptions are as follows:

- The hydraulic gradient (i) of groundwater is variable across the Site and thus, the highest hydraulic gradient value was used in the calculation. The larger the value of i, the greater the calculated value of mass flux.
- The plume thickness (b) was estimated conservatively by using the distance from the top of the water table to the top of the well screen of a deeper well at a well couplet, yet the actual plume thickness may be somewhat less, as site constituents were either not detected or detected at very low levels in the deeper wells positioned adjacent to the river. The larger the value of b, the greater the calculated value of mass flux.
- The river volumetric flow value used to calculate in river concentrations (11.2 ft³/s or 317 L/s) was derived using a 7Q10 flow analysis (the lowest 7-day average flow that occurs, on average, once every 10 years) for the period April 1, 1958 through March 31, 1968 using data from a USGS river gauging station proximal the Site (USGS 01306000, Patchogue River at Patchogue New York). Thus, it was assumed for this estimate that the flow rate in the river is equal to that during periods of very low flow, and the lower the assumed river flow, the greater the estimated concentration in the river water. For comparison, the mean river flow rate at the same river gauging location using data from 1945 to 1976 is 20.4 ft³/s (579 L/s). Table E-1 provides the data used to determine the 7Q10 flow

in the Patchogue River. Attachment E-1 presents the data plotted on log probability paper and the resultant 7Q10 flow value.

To screen for potential impacts to the river, the estimated concentrations of benzo(a)pyrene and phenanthrene were calculated using the above-described method and compared to the New York State Ambient Water Quality Standards and Guidance Values (NYSDEC, June 1998 with Addenda dated April 2000 and June 2004). Listed in the table below are standards and guidance values for benzo(a)pyrene and phenanthrene that are applicable to Class C Fresh Water (no standards have been developed for these compounds).

Class C Fresh Surface Water Standards and Guidance Values

Substance	Water Class (per 6NYCRR Part 701)	Standard (µg/l)	Guidance Value (µg/l)	Protection for:
Benzo(a)pyrene	A, A-S, AA, AA-S, B, C, D		0.0012	Human Consumption of Fish
Phenanthrene	A, A-S, AA, AA-S, B, C		5.0	Fish propagation
	A, A-S, AA, AA-S, B, C, D		45	Fish survival

Attachments E-2 and E-3 contain the calculations and results for each of these constituents. The estimated concentrations in the Patchogue River resulting from site groundwater impacts are as follows:

- Benzo(a)pyrene = 0.00008 μg/L
- Phenanthrene = 0.025 μg/L

These conservatively estimated (i.e., biased high) concentrations are below the surface water guidance values listed above, including the lowest guidance value applicable to Class C surface waters. Also, the estimated concentrations are below the analytical laboratory detection limits for these constituents. Based on the evaluation conducted, site-related constituents in shallow groundwater do not impact surface water quality in the Patchogue River.

Tables

TABLE E-1
SUMMARY OF DATA USED TO CALCULATE 7Q10 FLOW IN PATCHOGUE RIVER
PATCHOGUE FORMER MGP SITE
PATCHOGUE, NEW YORK

Water Year ⁽¹⁾	Low Flow (ft ³ /s)	Rank	Probability
1961	20.1	1	0.091
1958	19.1	2	0.182
1960	16.9	3	0.273
1962	16.6	4	0.364
1959	16.0	5	0.455
1967	14.4	6	0.545
1964	13.6	7	0.636
1965	12.9	8	0.727
1963	12.4	9	0.818
1966	11.1	10	0.909

Notes:

(1) - 7Q10 flow (ft³/s) calculated using data from a USGS river gauging station (USGS 01306000 PATCHOGUE RIVER AT PATCHOGUE NY), for period 4/1/1958 through 3/31/1968.

ft3/s - cubic feet per second

Figures

153021

DATE: February 2021

NATIONAL GRID PATCHOGUE FORMER MGP SITE VILLAGE OF PATCHOGUE, NEW YORK WATER TABLE ELEVATION CONTOUR MAP DECEMBER 28, 2020

153021

DATE: January 2021

NATIONAL GRID
PATCHOGUE FORMER MGP SITE
VILLAGE OF PATCHOGUE, NEW YORK

BENZO(A)PYRENE IN GROUNDWATER
DECEMBER, 2020

DATE: January 2021

PATCHOGUE FORMER MGP SITE VILLAGE OF PATCHOGUE, NEW YORK

DECEMBER, 2020

Attachments

ATTACHMENT E-2 MASS FLUX CALCULATIONS - BENZO(A)PYRENE PATCHOGUE RIVER

Mass Flux Calculation

Enter site data in yellow highlighted cells

Benzo(a)pyrene (December 2020) Figure No. See Figure E-2

mf = kiA Where:

mf = mass flux, μ g/s

k = hydraulic conductivity, cm/s

I = hydraulic gradient, dimensionless A = cross-sectional area, cm^{2 (L * b)}

 $C = (\mu g/L)/1000 = \mu g/cm^3$

Shallow Groundwater Flux

0.1-0.1 Contour

						Contour		Segment	
k =	6.1E-03	hydraulic conductivity, cm	/s	Geometric mean of PDI slug tests for shallow water tal	ole wells	Interval	Geomean	Length	Thickness
i =	0.15	hydraulic gradient, dimen:	sionless	Measured in vicinity of selected contours		0.	1		
C=	0.1	μg/L =	$0.0001 \ \mu g/cm^3$	Geometric mean concentration between selected con-	tours	0.	1 0.10	16	18
L =	16	ft =	487.68 cm	Length of segment between selected contours [C]					
	10		E 40 C 4	Catamata dithialmana					

b = 18 ft = 548.64 cm Saturated thickness

mf = 2.5E-02 μg/s 7.7E-01 g/yr 0.00170 lbs/yr mf_{sgw} = 0.02450 μg/s 0.773 g/yr 0.00170 lbs/yr

River Concentration

R_R= mf_{sgw}

Where: D_R = Patchos

 $D_{R=}$ Patchogue River flow, L/s $mf_{sgw=}$ Shallow groundwater flux

See above

7010 flow (ft $^3/s$) calculated using data from a USGS river gauging station (USGS 01306000 PATCHOGUE RIVER AT PATCHOGUE NY), for period 4/1/1958 through

 D_{R} 11.2 ft³/s = 317 L/s

 $C_{R=}$ 0.00008 μ g/L

ATTACHMENT E-3 MASS FLUX CALCULATIONS - PHENANTHRENE PATCHOGUE RIVER

Mass Flux Calculation

Enter site data in yellow highlighted cells

Phenanthrene (Decemi	ber 2020) Figure No.	See Figure E-3
mf =	kiA * C	
Where:	mf = mass flux, μg/s	
	k = hydraulic conductivity, cm/s	
	I = hydraulic gradient, dimensionless	
	A = cross-sectional area, cm ^{2 (L * b)}	
	$C = (\mu g/L)/1000 = \mu g/cm^3$	

Shallow Groundwater Flux

mf=

1.7E-01 µg/s

0.1-1 Contour

						Contour		Segment	
k =	6.1E-03	hydrau	lic conductivity, cm/s	Geometric mean of PDI slug tests for shallow water tal	ble wells	Interval	Geomean	Length	Thickness
j =	0.15	hydrau	lic gradient, dimensionless	Measured in vicinity of selected contours		0.1			
C=	0.316227766	μg/L=	0.000316228 μg/cm ³	Geometric mean concentration between selected con-	tours	1	0.32	35	18
L=	35	ft =	1066.8 cm	Length of segment between selected contours [C]		10	3.16	67	18
b =	18	ft =	548.64 cm	Saturated thickness		13	11.40	26	18

1-10 Contour

k = i =	6.1E-03 hydraulic cond 0.15 hydraulic grad	• • •	Geometric mean of PDI slug tests for shallow water table wells Measured in vicinity of selected contours
C=	3.16 µg/L=	0.003162278 µg/cm ³	Geometric mean concentration between selected contours
L=	67 ft =	2042.16 cm	Length of segment between selected contours [C]
b =	18 ft =	548.64 cm	Saturated thickness
mf =	3.2E+00 µg/s	1.0E+02 g/yr	0.2251 lbs/yr

5.3E+00 g/yr

10-13 Contour

k =	6.1E-03 hydraulic cond	uctivity, cm/s	Geometric mean of PDI slug tests for shallow water table v		
j =	0.15 hydraulic gradi	ent, dimensionless	Measured in vicinity of selected contours		
C=	11.40 μg/L=	0.011401754 μg/cm ³	Geometric mean concentration between selected contours		
L=	26 ft =	792.48 cm	Length of segment between selected contours [C]		
b =	18 ft =	548.64 cm	Saturated thickness		
mf =	4.5E+00 μg/s	1.4E+02 g/yr	0.3150 lbs/yr		
f _{sgw} =	7.95 µg/s	251 g/yr	0.552 lbs/yr		

River Concentration

 $C_{R} = \frac{mf_{sgw}}{D_{R}}$

Where:

D _{R =} mf _{sgw =}	Patchogue River flow, L/s Shallow groundwater flux	See above	7010 flow (ft 3 /s) calculated using data from a USGS river gauging station (USGS 01306000 PATCHOGUE RIVER AT PATCHOGUE NY), for period $4/1/1958$ through
D _R =	11.2 ft ³ /s =	317 L/s	

0.01176 lbs/yr

 $C_{R=}$ 0.025 μ g/L

Appendix F: Evaluation of Potential Impact to River from Increased pH Levels in Groundwater – December 2020 Data

Appendix G

Evaluation of Potential Impact to River from Increased pH Levels in Groundwater Patchogue Former MGP Site Patchogue, New York

As described in the Fourth Quarter 2020 Groundwater Monitoring Report, elevated pH levels were measured in the shallow groundwater (i.e., the upper ±18 feet) in the vicinity of the ISS mass during the December 2020 groundwater sampling activities. The increased pH levels are considered a potential effect from implementation of ISS in the area and it is anticipated that the pH will decrease to preremedy levels with time (i.e., as ISS mass continues to fully cure). Shallow groundwater generally flows from northwest to the south and southeast across the Site toward the Patchogue River (see Figure G-1 for a depiction of shallow groundwater flow).

The pH levels measured at MW-3 and MW-13S in December 2020 were 10.46 and 9.60, respectively, which is above the acceptable range for pH levels applicable to the Patchogue River (the portion of the Patchogue River proximal to the Site is classified as a Class C water body per 6 NYCRR Part 897). In accordance with 6 NYCRR Part 703.3, pH shall not be less than 6.5 nor more than 8.5 in Class C water bodies. Although it was not anticipated that the increased pH levels would result in an impact to surface water quality if they discharged to the river, the following analysis was conducted to confirm this.

An analysis was conducted to assess the potential for discharge of shallow groundwater with elevated pH levels to impact water quality in the Patchogue River. The evaluation was conducted by estimating the rate at which a mass of hydroxide (OH-), dissolved in groundwater, may be contributing to the surface water in the Patchogue River (i.e., the mass flux of hydroxide from groundwater to surface water). This approach is consistent with that described in the document entitled "Groundwater Remediation Strategies Tool" (American Petroleum Institute Publication 4730, December 2003). The equation for calculating the mass flux of a constituent is:

 $mf=\Sigma C_iq_iA_i$

Where: mf = total mass flux of dissolved hydroxide from the source (µg/sec)

 C_i = concentration of the hydroxide ion (μ g/mL= μ g/cm³)

q_i = specific discharge through the flow area (cm/sec) where: q_i=Ki, with K= hydraulic conductivity (cm/sec) and i=hydraulic gradient (cm/cm)

 A_i = flow area perpendicular to flow (cm²) where: A_i =(L)(b), with L=width of constituent plume perpendicular to flow and b=plume thickness

In applying this evaluation to the Site, an estimate of the mass flux of hydroxide (in μ g/sec) was calculated for shallow groundwater. The mass flux for the shallow groundwater was calculated across a cross-sectional flow area positioned at the downgradient side of the former MGP site, aligned perpendicular to groundwater flow (which in this case is typically parallel or sub-parallel to the shore line). The vertical dimension of the flow area is equal to the plume thickness (b) within the shallow

groundwater. The horizontal dimension of the flow area, L, is equal to the width of the hydroxide plume, which is based on the isoconcentration contours developed from the results of the December 2020 sampling event (see Figure G-2). The concentration of hydroxide in the Patchogue River resulting from groundwater discharge was estimated using the following equation:

 $C_R = mf_{sgw}/D_R$

Where: C_R = Concentration of hydroxide in the river ($\mu g/L$)

 mf_{sgw} = Mass flux to the river from shallow groundwater (µg/s)

 D_R = Patchogue River volumetric flow (L/s)

To address some of the uncertainties in this evaluation, conservative assumptions were made in the above-described calculations which result in river water concentration estimates that are biased high. These assumptions are as follows:

- The hydraulic gradient (i) of groundwater is variable across the Site and thus, the highest hydraulic gradient value was used in the calculation. The larger the value of i, the greater the calculated value of mass flux.
- The plume thickness (b) was estimated conservatively by using the distance from the top of the water table to the top of the well screen of a deeper well at a well couplet, yet the actual plume thickness may be somewhat less, as site constituents were either not detected or detected at very low levels in the deeper wells positioned adjacent to the river. The larger the value of b, the greater the calculated value of mass flux.
- The river volumetric flow value used to calculate in river concentrations (11.2 ft³/s or 317 L/s) was derived using a 7Q10 flow analysis (the lowest 7-day average flow that occurs, on average, once every 10 years) for the period April 1, 1958 through March 31, 1968 using data from a USGS river gauging station proximal the Site (USGS 01306000, Patchogue River at Patchogue New York). Thus, it was assumed for this estimate that the flow rate in the river is equal to that during periods of very low flow, and the lower the assumed river flow, the greater the estimated concentration in the river water. For comparison, the mean river flow rate at the same river gauging location using data from 1945 to 1976 is 20.4 ft³/s (579 L/s). Table G-1 provides the data used to determine the 7Q10 flow in the Patchogue River. Attachment G-1 presents the data plotted on log probability paper and the resultant 7Q10 flow value.
- The mass flux estimate assumes that there is no pH buffering capacity in the river water; the buffering capacity would resist change to pH in the river water due to contributions of higher pH groundwater.

To screen for potential impacts to the river, the estimated concentration of hydroxide was calculated using the above-described method and then converted back to pH to compare to water quality standards for pH per NYCRR Part 703 Surface Water and Groundwater Quality Standards and Groundwater Effluent Limitations. Attachment G-2 contains the calculations and results for the analysis performed. The estimated concentration of hydroxide in the Patchogue River resulting from site groundwater impacts is 3.67 μ g/L, which equates to a pH level of 7.45. For comparison, water quality data was obtained from a USGS river gauging station proximal to the Site (USGS 01306000, Patchogue River at Patchogue New York) for the period May 6, 1966 to August 12, 1996; pH levels measured at this station during this period ranged from 5.3 to 8.4 and had a median of 6.8. This median pH value was accounted for in the mass flux estimate. Specifically, the median pH of 6.8 in the Patchogue River, which equates to a hydroxide ion concentration of 1.07 μ g/L was added to the estimated hydroxide ion concentration in the river contributed by site groundwater to reflect hydroxide conditions already present in the surface water. The conservatively-estimated (i.e., biased high) pH level of 7.45 is above the median level measured in

the river, which may be a result of the increased pH levels in shallow groundwater adjacent to the river; however, it is within the acceptable range for pH levels in Class C water bodies in accordance with 6 NYCRR Part 703.3 (i.e., pH shall not be less than 6.5 nor more than 8.5). Based on the evaluation conducted, the increased pH levels in shallow groundwater do not impact surface water quality in the Patchogue River.

Tables

TABLE G-1 SUMMARY OF DATA USED TO CALCULATE 7Q10 FLOW IN PATCHOGUE RIVER PATCHOGUE FORMER MGP SITE PATCHOGUE, NEW YORK

Water Year ⁽¹⁾	Low Flow (ft ³ /s)	Rank	Probability
1961	20.1	1	0.091
1958	19.1	2	0.182
1960	16.9	3	0.273
1962	16.6	4	0.364
1959	16.0	5	0.455
1967	14.4	6	0.545
1964	13.6	7	0.636
1965	12.9	8	0.727
1963	12.4	9	0.818
1966	11.1	10	0.909

Notes

(1) - 7Q10 flow (ft³/s) calculated using data from a USGS river gauging station (USGS 01306000 PATCHOGUE RIVER AT PATCHOGUE NY), for period 4/1/1958 through 3/31/1968.

ft3/s - cubic feet per second

Figures

153021

DATE: February 2021

NATIONAL GRID PATCHOGUE FORMER MGP SITE VILLAGE OF PATCHOGUE, NEW YORK WATER TABLE ELEVATION CONTOUR MAP DECEMBER 28, 2020

G-1

DATE: January 2021

PATCHOGUE FORMER MGP SITE VILLAGE OF PATCHOGUE, NEW YORK

DECEMBER, 2020

Attachments

ATTACHMENT G-2 MASS FLUX CALCULATIONS - pH PATCHOGUE RIVER

Mass Flux Calculation

Enter site data in yellow highlighted cells

pH (December 2020)	Figure No.	See Figure G-2
mf = Where:	kiA * C mf = mass flux, µg/s k = hydraulic conductivity, cm/s I = hydraulic gradient, dimensionless A = cross-sectional area, cm ^{2 (L * b)} C = (µg/L)/1000=µg/cm ³	

Shallow Groundwater Flux

10-100 Contour									
						Contour		Segment	
k =	6.1E-03	hydrauli	c conductivity, cm/s	Geometric mean of PDI slug tests for shallow water tal	ble wells	Interval	Geomean	Length	Thickness
i=	0.15	hydrauli	c gradient, dimensionless	Measured in vicinity of selected contours			10		
C=	31.6227766	μg/L =	0.031622777 µg/cm ³	Geometric mean concentration between selected con	tours	1	00 31.62	23	18
L=	23	ft =	701.04 cm	Length of segment between selected contours [C]		10	00 316.23	63	18
b =	18	ft =	548.64 cm	Saturated thickness		49	05 2214.72	25	18
mf =	1.1E+01	µg/s	3.5E+02 g/yr	0.77275 lbs/yr					
						49	05 2214.72	25	18

k = i =	6.1E-03 hydraulic cond 0.15 hydraulic gradi	• • •	Geometric mean of PDI slug tests for shallow water table wells Measured in vicinity of selected contours
C=	316.23 µg/L=	0.316227766 µg/cm ³	Geometric mean concentration between selected contours
L=	63 ft =	1920.24 cm	Length of segment between selected contours [C]
b =	18 ft =	548.64 cm	Saturated thickness
mf =	3.1E+02 μg/s	9.6E+03 g/yr	21.1665 lbs/yr

1000-4905 Contour

k =	6.1E-03 hydraulic cond	uctivity, cm/s	Geometric mean of PDI slug tests for shallow water table wells
i =	0.15 hydraulic gradi	ent, dimensionless	Measured in vicinity of selected contours
C=	2214.72 μg/L=	2.214723459 µg/cm ³	Geometric mean concentration between selected contours
L =	25 ft =	762 cm	Length of segment between selected contours [C]
b =	18 ft =	548.64 cm	Saturated thickness
mf =	8.5E+02 μg/s	2.7E+04 g/yr	58.8258 lbs/yr
ıf _{sgw} =	1164.11 µg/s	36711.4 g/yr	80.765 lbs/yr

River Concentration

Where:

$\frac{C_{R}}{D_{R}}$	_		
D _{R =} mf _{sew =}	Patchogue River flow, L/s Shallow groundwater flux	11.2 See above	7010 flow (ft ³ /s) calculated using data from a USGS river gauging station (USGS 01306000 PATCHOGUE RIVER AT PATCHOGUE RIV), for period 4/1/1958 throug

 D_{R} 11.2 ft³/s = 317 L/s

 C_{R*} 4.74 μ g/L Note - Value is based on hydroxide ion (OH) from groundwater discharge plus ambient OH: in river (1.07 μ g/L).

 $pH_{R=}$ 7.45 std. units